1. |
Xu M P, He F, Jung P, et al. Current challenges for the practical application of electroencephalography-based brain-computer interfaces. Engineering, 2021, 7(12): 1710-1712..
|
2. |
Torres E P, Torres E A, Hernandez-Alvarez M, et al. EEG-based BCI emotion recognition: A survey. Sensors, 2020, 20(18): 36..
|
3. |
Meng J Y, Xu M P, Wang K, et al. Separable EEG features induced by timing prediction for active brain-computer interfaces. Sensors, 2020, 20(12): 3588..
|
4. |
Li Z, Lan Z, Tang D, et al. Survey on ERP-based target detection. Comput Eng Appl, 2021, 57(23): 37-49..
|
5. |
Grootswagers T, Zhou I, Robinson A K, et al. Human EEG recordings for 1,854 concepts presented in rapid serial visual presentation streams. Sci Data, 2022, 9(1): 3..
|
6. |
Won K, Kwon M, Ahn M, et al. EEG dataset for RSVP and P300 speller brain-computer interfaces. Sci Data, 2022, 9(1): 388..
|
7. |
Liu S, Wang W, Sheng Y, et al. Improving the cross-subject performance of the ERP-based brain-computer interface using rapid serial visual presentation and correlation analysis rank. Front Hum Neurosci, 2020, 14: 00296..
|
8. |
Mijani A M, Shamsollahi M B, Hassani M S, et al. Comparison between single, dual and triple rapid serial visual presentation paradigms for P300 speller// 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) - Human Genomics. Madrid: IEEE, 2018: 2635-2638..
|
9. |
Lin Z, Zhang C, Zeng Y, et al. A novel P300 BCI speller based on the triple RSVP paradigm. Sci Rep, 2018, 8(1): 3350..
|
10. |
Mijani A M, Shamsollahi M B, Hassani M S. A novel dual and triple shifted RSVP paradigm for P300 speller. J Neurosci Methods, 2019, 328: 108420..
|
11. |
Lees S, Mccullagh P, Payne P, et al. Speed of rapid serial visual presentation of pictures, numbers and words affects event-related potential-based detection accuracy. IEEE Trans Neural Syst Rehabil Eng, 2020, 28(1): 113-122..
|
12. |
Fernandez-Rodriguez A, Darves-Bornoz A, Velasco-Alvarez F, et al. Effect of stimulus size in a visual ERP-based BCI under RSVP. Sensors, 2022, 22(23): 9505..
|
13. |
Ahani A, Moghadamfalahi M, Erdogmus D. Language-model assisted and icon-based communication through a brain-computer interface with different presentation paradigms. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(9): 1835-1844..
|
14. |
Fernandez-Rodriguez A, Medina-Julia M T, Velasco-Alvarez F, et al. Different effects of using pictures as stimuli in a P300 brain-computer interface under rapid serial visual presentation or row-column paradigm. Med Biol Eng Comput, 2021, 59(4): 869-881..
|
15. |
Ron-Angevin R, Medina-Julia M T, Fernandez-Rodriguez A, et al. Performance analysis with different types of visual stimuli in a BCI-based speller under an RSVP paradigm. Front Comput Neurosci, 2021, 14: 587702..
|
16. |
Won D O, Hwang H J, Kim D M, et al. Motion-based rapid serial visual presentation for gaze-independent brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(2): 334-343..
|
17. |
Jalilpour S, Hajipour Sardouie S, Mijani A. A novel hybrid BCI speller based on RSVP and SSVEP paradigm. Comput Methods Programs Biomed, 2020, 187: 105326..
|
18. |
Gonzalez-Navarro P, Celik B, Moghadamfalahi M, et al. Feedback related potentials for EEG-based typing systems. Front Hum Neurosci, 2022, 15: 13..
|
19. |
Zisk A H, Borgheai S B, Mclinden J, et al. P300 latency jitter and its correlates in people with amyotrophic lateral sclerosis. Clin Neurophysiol, 2021, 132(2): 632-642..
|
20. |
Li B, Lin Y, Gao X, et al. Enhancing the EEG classification in RSVP task by combining interval model of ERPs with spatial and temporal regions of interest. J Neural Eng, 2021, 18(1): 016008..
|
21. |
Zhang C, Qiu S, Wang S, et al. Target detection using ternary classification during a rapid serial visual presentation task using magnetoencephalography data. Front Comput Neurosci, 2021, 15: 619508..
|
22. |
Lin Z, Zeng Y, Wang X, et al. EEG-based target detection during a multi-rapid serial visual presentation// 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER). Shanghai: IEEE, 2017: 556-559..
|
23. |
Hou Y, Gu Z, Yu Z L, et al. Enhancement of lower limb motor imagery ability via dual-level multimodal stimulation and sparse spatial pattern decoding method. Front Hum Neurosci, 2022, 16: 975410..
|
24. |
迟新一, 崔红岩, 陈小刚. 结合稳态视觉诱发电位的多模态脑机接口研究进展. 中国生物医学工程学报, 2022, 41(2): 204-213..
|
25. |
Onishi A. Brain-computer interface with rapid serial multimodal presentation using artificial facial images and voice. Comput Biol Med, 2021, 136: 104685..
|
26. |
Mao J, Qiu S, Li D, et al. A cross-modal guiding and fusion method for multi-modal RSVP-based image retrieval// 2021 International Joint Conference on Neural Networks (IJCNN). Shenzhen: IEEE, 2021: 1-7..
|
27. |
Mao J, Qiu S, Wei W, et al. Cross-modal guiding and reweighting network for multi-modal RSVP-based target detection. Neural Networks, 2023, 161: 65-82..
|
28. |
Song X, Zeng Y, Tong L, et al. A collaborative brain-computer interface framework for enhancing group detection performance of dynamic visual targets. Comput Intell Neurosci, 2022, 2022: 4752450..
|
29. |
韩锦, 董博文, 刘邈, 等. 基于P300-SSVEP的双人协同脑-控机械臂汉字书写系统. 数据采集与处理, 2022, 37(6): 1401-1411..
|
30. |
Bhattacharyya S, Valeriani D, Cinel C, et al. Anytime collaborative brain-computer interfaces for enhancing perceptual group decision-making. Sci Rep, 2021, 11(1): 17008..
|
31. |
Zhang H, Zhu L, Xu S, et al. Two brains, one target: Design of a multi-level information fusion model based on dual-subject RSVP. J Neurosci Methods, 2021, 363: 109346..
|
32. |
Valeriani D, O’Flynn L C, Worthley A, et al. Multimodal collaborative brain-computer interfaces aid human-machine team decision-making in a pandemic scenario. J Neural Eng, 2022, 19(5): 056036..
|
33. |
Salvatore C, Valeriani D, Piccialli V, et al. Optimized collaborative brain-computer interfaces for enhancing face recognition. IEEE Trans Neural Syst Rehabil Eng, 2022, 30: 1223-1232..
|
34. |
Zhang S, Sun L, Mao X, et al. Review on EEG-based authentication technology. Comput Intell Neurosci, 2021, 2021: 5229576..
|
35. |
Wang H W, Qi Y, Yu H, et al. RCIT: An RSVP-based concealed information test framework using EEG signals. IEEE Trans Cognit Dev Syst, 2022, 14(2): 541-551..
|
36. |
Jangwan N S, Ashraf G M, Ram V, et al. Brain augmentation and neuroscience technologies: Current applications, challenges, ethics and future prospects. Front Syst Neurosci, 2022, 16: 1000495..
|
37. |
Zhang S, Chen X, Wang Y, et al. Visual field inhomogeneous in brain-computer interfaces based on rapid serial visual presentation. J Neural Eng, 2022, 19(1): 016015..
|
38. |
Zokaei N, Gillebert C R, Chauvin J J, et al. Temporal orienting in Parkinson’s disease. Eur J Neurosci, 2021, 53(8): 2713-2725..
|
39. |
Shalbaf A, Bagherzadeh S, Maghsoudi A. Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals. Phys Eng Sci Med, 2020, 43(4): 1229-1239..
|
40. |
Yi W, Qiu S, Fan X, et al. Evaluation of mental workload associated with time pressure in rapid serial visual presentation tasks. IEEE Trans Cognit Dev Syst, 2022, 14(2): 608-616..
|
41. |
Nayak T, Ko L-W, Jung T-P, et al. Target classification in a novel SSVEP-RSVP based BCI gaming system// 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). Bari: IEEE, 2019: 4194-4198..
|
42. |
Ko L-W, Sankar D S V, Huang Y, et al. SSVEP-assisted RSVP brain-computer interface paradigm for multi-target classification. J Neural Eng, 2021, 18(1): 016021..
|
43. |
Diddi S V S, Ko L W. Course-grained multi-scale EMD based fuzzy entropy for multi-target classification during simultaneous SSVEP-RSVP hybrid BCI paradigm. Int J Fuzzy Syst, 2022, 24(5): 2157-2173..
|
44. |
陈景霞, 郝为, 张鹏伟,等. RSVP与SSVEP混合脑电信号刺激与多类事件检测. 计算机工程与应用, 2020, 56(15): 132-139..
|