1. |
Gennisson J L, Deffieux T, Fink M, et al. Ultrasound elastography: principles and techniques. Diagnostic and Interventional Imaging, 2013, 94(5): 487-495.
|
2. |
Parker K J, Doyley M M, Rubens D J. Imaging the elastic properties of tissue: the 20 year perspective. Physics in Medicine & Biology, 2010, 56(1): R1-R29.
|
3. |
Doyley M M, Bamber J C, Shiina T, et al. Reconstruction of elastic modulus distribution from envelope detected B-mode data//1996 IEEE Ultrasonics Symposium. Proceedings, IEEE, 1996, 2: 1611-1614.
|
4. |
Hansen H H, Richards M S, Doyley M M, et al. Noninvasive vascular displacement estimation for relative elastic modulus reconstruction in transversal imaging planes. Sensors, 2013, 13(3): 3341-3357.
|
5. |
Wang Z, Liu Y, Sun L Z, et al. Elasto-mammography: elastic property reconstruction in breast tissues. MRS Online Proceedings Library (OPL), 2005, 874: 69.
|
6. |
Zhi H, Ou B, Luo B M, et al. Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions. J Ultrasound Med, 2007, 26(6): 807-815.
|
7. |
Sigrist R M S, Liau J, Kaffas A E, et al. Ultrasound elastography: review of techniques and clinical applications. Theranostics, 2017, 7(5): 1303-1329.
|
8. |
Oberai A A, Gokhale N H, Feijóo G R. Solution of inverse problems in elasticity imaging using the adjoint method. Inverse Problems, 2003, 19(2): 297.
|
9. |
Goenezen S, Barbone P, Oberai A A. Solution of the nonlinear elasticity imaging inverse problem: the incompressible case. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13-16): 1406-1420.
|
10. |
Oberai A A, Gokhale N H, Doyley M M, et al. Evaluation of the adjoint equation based algorithm for elasticity imaging. Physics in Medicine & Biology, 2004, 49(13): 2955-2974.
|
11. |
Richards M S, Barbone P E, Oberai A A. Quantitative three-dimensional elasticity imaging from quasi-static deformation: a phantom study. Physics in Medicine & Biology, 2009, 54(3): 757-779.
|
12. |
Barbone P E, Oberai A A. Elastic modulus imaging: some exact solutions of the compressible elastography inverse problem. Physics in Medicine & Biology, 2007, 52(6): 1577-1593.
|
13. |
Barbone P E, Rivas C E, Harari I, et al. Adjoint-weighted variational formulation for the direct solution of inverse problems of general linear elasticity with full interior data. International Journal for Numerical Methods in Engineering, 2010, 81(13): 1713-1736.
|
14. |
Babaniyi O A, Oberai A A, Barbone P E. Direct error in constitutive equation formulation for plane stress inverse elasticity problem. Computer Methods in Applied Mechanics and Engineering, 2017, 314: 3-18.
|
15. |
Doyley M M. Model-based elastography: a survey of approaches to the inverse elasticity problem. Physics in Medicine & Biology, 2012, 57(3): R35.
|
16. |
Chen C T, Gu G X. Learning hidden elasticity with deep neural networks. Proc Natl Acad Sci U S A, 2021, 118(31): e2102721118.
|
17. |
Ni B, Gao H. A deep learning approach to the inverse problem of modulus identification in elasticity. MRS Bulletin, 2021, 46: 19-25.
|
18. |
Zhang X, Wang R, Wei X, et al. Displacement-based reconstruction of elasticity distribution with deep neural network//2022 IEEE International Ultrasonics Symposium (IUS). IEEE, 2022: 1-5.
|
19. |
Wen S, Peng B, Wei X, et al. Convolutional neural network-based speckle tracking for ultrasound strain elastography: an unsupervised learning approach. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2023, 70(5): 354-367.
|
20. |
Wei X, Wang Y, Ge L, et al. Unsupervised convolutional neural network for motion estimation in ultrasound elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69(7): 2236-2247.
|
21. |
Mao X, Li Q, Xie H, et al. Least squares generative adversarial networks//Proceedings of the IEEE International Conference on Computer Vision, IEEE, 2017: 2794-2802.
|
22. |
Kieu M, Berlincioni L, Galteri L, et al. Robust pedestrian detection in thermal imagery using synthesized images//2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021: 8804-8811.
|
23. |
Lei L, Mardani M. Semi-supervised super-resolution GANs for MRI reconstruction//31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach. 2017.
|
24. |
Hammernik K, Schlemper J, Qin C, et al. Systematic evaluation of iterative deep neural networks for fast parallel MRI reconstruction with sensitivity-weighted coil combination. Magn Reson Med, 2021, 86(4): 1859-1872.
|
25. |
Dai J, Qi H, Xiong Y, et al. Deformable convolutional networks//Proceedings of the IEEE International Conference on Computer Vision. 2017: 764-773.
|
26. |
Isola P, Zhu J Y, Zhou T, et al. Image-to-image translation with conditional adversarial networks//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 1125-1134.
|
27. |
Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint, 2015, arXiv: 1511.06434.
|
28. |
Hall T J, Zhu Y, Spalding C S. in vivo real-time freehand palpation imaging. Ultrasound Med Biol, 2003, 29(3): 427-435.
|
29. |
Wen S, Peng B, Jiang H, et al. Augmenting 3D ultrasound strain elastography by combining Bayesian inference with local polynomial fitting in region-growing-based motion tracking//2021 IEEE International Conference on Image Processing (ICIP). IEEE, 2021: 2963-2967.
|
30. |
He L, Peng B, Yang T, et al. An application of super-resolution generative adversary networks for quasi-static ultrasound strain elastography: a feasibility study. IEEE Access, 2020, 8: 65769-65779.
|
31. |
Athanasiou A, Tardivon A, Tanter M, et al. Breast lesions: quantitative elastography with supersonic shear imaging--preliminary results. Radiology, 2010, 256(1): 297-303.
|