1. |
Qian Y, Chen X, Naidu R K, et al. Comparison of efficacy and visual outcomes after SMILE and FS-LASIK for the correction of high myopia with the sum of myopia and astigmatism from -10. 00 to -14.00 dioptres. Acta Ophthalmol, 2020, 98(2): e161-e172.
|
2. |
Blum M, Lauer A S, Kunert K S, et al. 10-year results of small incision lenticule extraction. J Refract Surg, 2019, 35(10): 618-623.
|
3. |
Moshirfar M, Tukan A N, Bundogji N, et al. Ectasia after corneal refractive surgery: a systematic review. Ophthalmol Ther, 2021, 10(4): 753-776.
|
4. |
Asif M I, Bafna R K, Mehta J S, et al. Complications of small incision lenticule extraction. Indian J Ophthalmol, 2020, 68(12): 2711-2722.
|
5. |
Wu Z, Wang Y, Zhang J, et al. Comparison of corneal biomechanics after microincision lenticule extraction and small incision lenticule extraction. Br J Ophthalmol, 2017, 101(5): 650-654.
|
6. |
Cao K, Liu L, Yu T, et al. Changes in corneal biomechanics during small-incision lenticule extraction (SMILE) and femtosecond-assisted laser in situ keratomileusis (FS-LASIK). Lasers Med Sci, 2020, 35(3): 599-609.
|
7. |
Fu D, Zhao Y, Zhou X. Corneal biomechanical properties after small incision lenticule extraction surgery on thin cornea. Curr Eye Res, 2021, 46(2): 168-173.
|
8. |
Zhang J, Zheng L, Zhao X, et al. Corneal biomechanics after small-incision lenticule extraction versus Q-value-guided femtosecond laser-assisted in situ keratomileusis. J Curr Ophthalmol, 2016, 28(4): 181-187.
|
9. |
Zhang H, Khan M A, Zhang D, et al. Corneal biomechanical properties after FS-LASIK with residual bed thickness less than 50% of the original corneal thickness. J Ophthalmol, 2018, 2018: 2752945.
|
10. |
Wang X, Li X, Chen W, et al. Effects of ablation depth and repair time on the corneal elastic modulus after laser in situ keratomileusis. Biomed Eng Online, 2017, 16(1): 20.
|
11. |
Kling S, Torres-Netto E A, Spiru B, et al. Quasi-static optical coherence elastography to characterize human corneal biomechanical properties. Invest Ophthalmol Vis Sci, 2020, 61(6): 29.
|
12. |
Zhang D, Qin X, Zhang H, et al. Time-varying regularity of changes in biomechanical properties of the corneas after removal of anterior corneal tissue. Biomed Eng Online, 2021, 20(1): 113.
|
13. |
张迪, 张海霞, 曾正, 等. 基于快、慢速加载单轴拉伸数据识别的角膜生物力学特性比较. 医用生物力学, 2022, 37(4): 669-675.
|
14. |
Pandolfi A, Holzapfel G A. Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientations. J Biomech Eng, 2008, 130(6): 061006.
|
15. |
Zhang H, Qian X, Li L, et al. Understanding the viscoelastic properties of rabbit cornea based on stress relaxation tests and cyclic uniaxial tests. J Mech Med Biol, 2017, 2017: 1740035.
|
16. |
Liu T, Shen M, Li H, et al. Changes and quantitative characterization of hyper-viscoelastic biomechanical properties for young corneal stroma after standard corneal cross-linking treatment with different ultraviolet-A energies. Acta Biomater, 2020, 113: 438-451.
|
17. |
Whitford C, Movchan N V, Studer H, et al. A viscoelastic anisotropic hyperelastic constitutive model of the human cornea. Biomech Model Mechanobiol, 2018, 17(1): 19-29.
|
18. |
王辉, 乔媛慧, 刘志成. 利用应变能衰减率确定软组织单轴拉伸预调次数. 医用生物力学, 2013, 28(6): 602-605.
|
19. |
Giri P, Azar D T. Risk profiles of ectasia after keratorefractive surgery. Curr Opin Ophthalmol, 2017, 28(4): 337-342.
|
20. |
Formisano N, van der Putten C, Grant R, et al. Mechanical properties of bioengineered corneal stroma. Adv Healthc Mater, 2021, 10(20): e2100972.
|
21. |
Blackburn B J, Jenkins M W, Rollins A M, et al. A review of structural and biomechanical changes in the cornea in aging, disease, and photochemical crosslinking. Front Bioeng Biotechnol, 2019, 7: 66.
|
22. |
Yu M, Chen M, Dai J. Comparison of the posterior corneal elevation and biomechanics after SMILE and LASEK for myopia: a short- and long-term observation. Graefes Arch Clin Exp Ophthalmol, 2019, 257(3): 601-606.
|
23. |
Hwang E S, Stagg B C, Swan R, et al. Corneal biomechanical properties after laser-assisted in situ keratomileusis and photorefractive keratectomy. Clin Ophthalmol, 2017, 11: 1785-1789.
|
24. |
杨兴华, 王育良, 徐新荣, 等. 准分子激光屈光性角膜切削术后角膜厚度的变化. 临床眼科杂志, 1998, 6(1): 14-15, 69-70.
|
25. |
Li H, Wang Y, Dou R, et al. Intraocular pressure changes and relationship with corneal biomechanics after SMILE and FS-LASIK. Invest Ophthalmol Vis Sci, 2016, 57(10): 4180-4186.
|
26. |
Molladavoodi S, Robichaud M, Wulff D, et al. Corneal epithelial cells exposed to shear stress show altered cytoskeleton and migratory behaviour. PLoS One, 2017, 12(6): e0178981.
|
27. |
Luft N, Ring M H, Dirisamer M, et al. Corneal epithelial remodeling induced by small incision lenticule extraction (SMILE). Invest Ophthalmol Vis Sci, 2016, 57(9): OCT176-OCT183.
|
28. |
Romito N, Trinh L, Goemaere I, et al. Corneal remodeling after myopic SMILE: an optical coherence tomography and in vivo confocal microscopy study. J Refract Surg, 2020, 36(9): 597-605.
|
29. |
Shetty R, Francis M, Shroff R, et al. Corneal biomechanical changes and tissue remodeling after SMILE and LASIK. Invest Ophthalmol Vis Sci, 2017, 58(13): 5703-5712.
|