1. |
中国医疗保健国际交流促进会急诊医学分会, 中华医学会急诊医学分会, 中国医师协会急诊医师分会,解放军急救医学专业委员会. 急性心力衰竭中国急诊管理指南(2022). 中国急救医学, 2022, 42(8): 648-670.
|
2. |
李平, 徐博翎, 吴婷婷, 等. 体外心室辅助治疗心源性休克的临床应用现况. 临床心血管病杂志, 2021, 37(6): 500-507.
|
3. |
Pahuja M, Hernandez-Montfort J, Whitehead E H, et al. Device profile of the Impella 5. 0 and 5.5 system for mechanical circulatory support for patients with cardiogenic shock: overview of its safety and efficacy. Expert Rev Med Devic, 2022, 19(1): 1-10.
|
4. |
Mierke J, Loehn T, Ende G, et al. Percutaneous left ventricular assist device leads to heart rhythm stabilisation in cardiogenic shock: results from the Dresden Impella Registry. Heart Lung Circ, 2021, 30(4): 577-584.
|
5. |
Wong A S K, Sin S W C. Short-term mechanical circulatory support (intra-aortic balloon pump, Impella, extracorporeal membrane oxygenation, TandemHeart): a review. Ann Transl Med, 2020, 8(13): 829.
|
6. |
De Potter T, Valeriano C, Buytaert D, et al. Noninvasive neurological monitoring to enhance pLVAD-assisted ventricular tachycardia ablation - a Mini review. Front Cardiovasc Med, 2023, 10: 1140153.
|
7. |
Li Y, Wang H, Xi Y, et al. Multi-indicator analysis of mechanical blood damage with five clinical ventricular assist devices. Comput Biol Med, 2022, 151: 106271.
|
8. |
Roka-Moiia Y, Li M, Ivich A, et al. Impella 5. 5 versus Centrimag: A head-to-head comparison of device hemocompatibility. ASAIO J, 2020, 66(10): 1142-1151.
|
9. |
Badiye A P, Hernandez G A, Novoa I, et al. Incidence of hemolysis in patients with cardiogenic shock treated with Impella percutaneous left ventricular assist device. ASAIO J, 2016, 62(1): 11-14.
|
10. |
Attinger-Toller A, Bossard M, Cioffi G M, et al. Ventricular unloading using the Impella(TM) device in cardiogenic shock. Front Cardiovasc Med, 2022, 9: 856870.
|
11. |
Vandenbriele C, Arachchillage Deepa J, Frederiks P, et al. Anticoagulation for percutaneous ventricular assist device-supported cardiogenic shock. J Am Coll Cardiol, 2022, 79(19): 1949-1962.
|
12. |
Wu P, Gao Q, Hsu P L. On the representation of effective stress for computing hemolysis. Biomech Model Mechan, 2019, 18(3): 665-679.
|
13. |
国家市场监督管理总局, 国家标准化管理委员会. 医疗器械生物学评价 第4部分: 与血液相互作用试验选择: GB/T 16886.4-2022. 北京: 中国标准出版社, 2022: 68.
|
14. |
Tian Y, Tian Z, Dong Y, et al. Current advances in nanomaterials affecting morphology, structure, and function of erythrocytes. RSC Adv, 2021, 11(12): 6958-6971.
|
15. |
Papanastasiou C A, Kyriakoulis K G, Theochari C A, et al. Comprehensive review of hemolysis in ventricular assist devices. World J Cardiol, 2020, 12(7): 334-341.
|
16. |
McNamee A P, Simmonds M J. Red blood cell sublethal damage: Hemocompatibility is not the absence of hemolysis. Transfus Med Rev, 2023, 37(2): 150723.
|
17. |
Kameneva M V, Burgreen G W, Kono K, et al. Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. ASAIO J, 2004, 50(5): 418.
|
18. |
唐洁, 程云章, 郑淇文, 等. 介入式微型轴流血泵溶血机理及影响因素分析. 中国医学物理学杂志, 2020, 37(3): 368-373.
|
19. |
曹伟. 血液保护学. 杭州: 浙江大学出版社, 2008.
|
20. |
Gorbet M B, Sefton M V. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials, 2004, 25(26): 5681-5703.
|
21. |
符珉瑞, 高斌, 常宇, 等. 血流动力学优化在人工心脏设计中的应用. 生物医学工程学杂志, 2020, 37(6): 1000-1011.
|
22. |
Yu H, Engel S, Janiga G, et al. A review of hemolysis prediction models for computational fluid dynamics. Artif Organs, 2017, 41(7): 603-621.
|
23. |
Giersiepen M, Wurzinger L J, Opitz R, et al. Estimation of shear stress-related blood damage in heart valve prostheses - in vitro comparison of 25 aortic valves. Int J Artif Organs, 1990, 13(5): 300-306.
|
24. |
Wurzinger L, Opitz R, Blasberg P, et al. Platelet and coagulation parameters following millisecond exposure to laminar shear stress. Thromb Haemost, 1985, 54(6): 381-386.
|
25. |
Yun Z, Yao J, Wang L, et al. The design and evaluation of the outflow structures of an interventional microaxial blood pump. Front Physiol, 2023, 14: 1169905.
|
26. |
Apel J, Paul R, Klaus S, et al. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif Organs, 2001, 25(5): 341-347.
|
27. |
Zhang P, Gao C, Zhang N, et al. Multiscale particle-based modeling of flowing platelets in blood plasma using dissipative particle dynamics and coarse grained molecular dynamics. Cell Mol Bioeng, 2014, 7(4): 552-574.
|
28. |
Xu Z, Wang C, He F, et al. Coarse-grained model of whole blood hemolysis and morphological analysis of erythrocyte population under non-physiological shear stress flow environment. Phys Fluids, 2023, 35(3): 031901.
|
29. |
Ma S, Wang S, Qi X, et al. Multiscale computational framework for predicting viscoelasticity of red blood cells in aging and mechanical fatigue. Comput Methods Appl Mech Eng, 2022, 391: 114535.
|
30. |
Xu Z, Chen C, Hao P, et al. Cell-scale hemolysis evaluation of intervenient ventricular assist device based on dissipative particle dynamics. Front Physiol, 2023, 14: 1181423.
|
31. |
Torner B, Frank D, Grundmann S, et al. Flow simulation-based particle swarm optimization for developing improved hemolysis models. Biomech Model Mechanobiol, 2023, 22(2): 401-416.
|
32. |
Down L A, Papavassiliou D V, O’Rear E A. Significance of extensional stresses to red blood cell lysis in a shearing flow. Ann Biomed Eng, 2011, 39(6): 1632-1642.
|
33. |
Sohrabi S, Liu Y. A cellular model of shear-induced hemolysis. Artif Organs, 2017, 41(9): E80-E91.
|
34. |
Nikfar M, Razizadeh M, Zhang J, et al. Prediction of mechanical hemolysis in medical devices via a Lagrangian strain-based multiscale model. Artif Organs, 2020, 44(8): E348-E368.
|
35. |
Manning K B, Nicoud F, Shea S M. Mathematical and computational modeling of device-induced thrombosis. Curr Opin Biomed Eng, 2021, 20: 100349.
|
36. |
Blum C, Groß-Hardt S, Steinseifer U, et al. An accelerated thrombosis model for computational fluid dynamics simulations in rotary blood pumps. Cardiovasc Eng Techn, 2022, 13(4): 638-649.
|
37. |
Li Y, Wang H, Xi Y, et al. A new mathematical numerical model to evaluate the risk of thrombosis in three clinical ventricular assist devices. Bioengineering, 2022, 9(6): 235.
|
38. |
Beavers C J, Didomenico R J, Dunn S P, et al. Optimizing anticoagulation for patients receiving Impella support. Pharmacotherapy, 2021, 41(11): 932-942.
|
39. |
Zhu Y, Han C, Zhang P, et al. AI-aided multiscale modeling of physiologically-significant blood clots. Comput Phys Commun, 2023, 287: 108718.
|
40. |
Gupta P, Zhang P, Sheriff J, et al. A multiscale model for multiple platelet aggregation in shear flow. Biomech Model Mechan, 2021, 20(3): 1013-1030.
|
41. |
Ye T, Shi H, Phan-Thien N, et al. The key events of thrombus formation: platelet adhesion and aggregation. Biomech Model Mechan, 2020, 19(3): 943-955.
|
42. |
Monteleone A, Viola A, Napoli E, et al. Modelling of thrombus formation using smoothed particle hydrodynamics method. PLoS One, 2023, 18(2): e0281424.
|
43. |
Xu Z, Chen N, Kamocka M M, et al. A multiscale model of thrombus development. J R Soc Interface, 2007, 5(24): 705-722.
|
44. |
Zhang P, Zhou X, Jiang J, et al. In situ analysis of membrane-protein binding kinetics and cell–surface adhesion using plasmonic scattering microscopy. Angew Chem Int Ed Engl, 2022, 61(42): e202209469.
|
45. |
Yazdani A, Deng Y, Li H, et al. Integrating blood cell mechanics, platelet adhesive dynamics and coagulation cascade for modelling thrombus formation in normal and diabetic blood. J R Soc Interface, 2021, 18(175): 20200834.
|