1. |
Feigin V L, Stark B A, Johnson C O, et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol, 2021, 20(10): 795-820.
|
2. |
Thayabaranathan T, Kim J, Cadilhac D A, et al. Global stroke statistics 2022. International Journal of Stroke, 2022, 17(9): 946-956.
|
3. |
Li Z, Jiang Y, Li H, et al. China’s response to the rising stroke burden. BMJ, 2019, 364: l879.
|
4. |
中国卒中学会, 中国卒中学会神经介入分会, 中华预防医学会卒中预防与控制专业委员会介入学组. 急性缺血性卒中血管内治疗影像评估中国专家共识. 中国卒中杂志, 2017, 12(11): 1041-1056.
|
5. |
中国卒中学会, 中国卒中学会神经介入分会, 中华预防医学会卒中预防与控制专业委员会 介入学组. 急性缺血性卒中血管内治疗中国指南2023. 中国卒中杂志, 2023, 18(6): 684-711.
|
6. |
de Ruijter J, van Sambeek M, van de Vosse F, et al. Automated 3D geometry segmentation of the healthy and diseased carotid artery in free-hand, probe tracked ultrasound images. Med Phys, 2020, 47(3): 1034-1047.
|
7. |
Subbanna N K, Rajashekar D, Cheng B, et al. Stroke lesion segmentation in FLAIR MRI datasets using customized Markov random fields. Frontiers in Neurology, 2019, 10: 541.
|
8. |
Anbumozhi S. Computer aided detection and diagnosis methodology for brain stroke using adaptive neuro fuzzy inference system classifier. International Journal of Imaging Systems and Technology, 2020, 30(1): 196-202.
|
9. |
Mokin M, Primiani C T, Siddiqui A H, et al. ASPECTS (Alberta Stroke Program Early CT Score) measurement using Hounsfield unit values when selecting patients for stroke thrombectomy. Stroke, 2017, 48(6): 1574-1579.
|
10. |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation//Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, 2015: 3431-3440.
|
11. |
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer Cham, 2015: 234-241.
|
12. |
Clèrigues A, Valverde S, Bernal J, et al. Acute ischemic stroke lesion core segmentation in CT perfusion images using fully convolutional neural networks. Computers in Biology and Medicine, 2019, 115: 103487.
|
13. |
Soltanpour M, Greiner R, Boulanger P, et al. Improvement of automatic ischemic stroke lesion segmentation in CT perfusion maps using a learned deep neural network. Computers in Biology and Medicine, 2021, 137: 104849.
|
14. |
Song L I, Geoffrey K F, Kaijian H E. Bottleneck feature supervised U-net for pixel-wise liver and tumor segmentation. Expert Systems with Applications, 2020, 145: 113131.
|
15. |
Feng X, Tustison N J, Patel S H, et al. Brain tumor segmentation using an ensemble of 3D U-nets and overall survival prediction using radiomic features. Frontiers in Computational Neuroscience, 2020, 14: 25.
|
16. |
Kumar A, Ghosal P, Kundu S S, et al. A lightweight asymmetric U-Net framework for acute ischemic stroke lesion segmentation in CT and CTP images. Computer Methods and Programs in Biomedicine, 2022, 226: 107157.
|
17. |
Tomita N, Jiang S, Maeder M E, et al. Automatic post-stroke lesion segmentation on MR images using 3D residual convolutional neural network. Neuroimage Clin, 2020, 27: 102276.
|
18. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2016: 770-778.
|
19. |
Drozdzal M, Vorontsov E, Chartrand G, et al. The importance of skip connections in biomedical image segmentation//International Workshop on Deep Learning in Medical Image Analysis, International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. Munich: Springer Cham, 2016: 179-187.
|
20. |
Aboudi F, Drissi C, Kraiem T. Efficient U-Net CNN with data augmentation for MRI ischemic stroke brain segmentation//2022 8th International Conference on Control, Decision and Information Technologies (CODIT’22), Istanbul, Turkey: IEEE, 2022: 724-728.
|
21. |
Cao K, Zhang X. An improved Res-UNet model for tree species classification using airborne high-resolution images. Remote Sensing, 2020, 12(7): 1128.
|
22. |
Karthik R, Gupta U, Jha A, et al. A deep supervised approach for ischemic lesion segmentation from multimodal MRI using fully convolutional network. Applied Soft Computing, 2019, 84: 105685.
|
23. |
Clèrigues A, Valverde S, Bernal J, et al. Acute and sub-acute stroke lesion segmentation from multimodal MRI. Computer Methods and Programs in Biomedicine, 2020, 194: 105521.
|
24. |
Howard A G, Zhu M, Chen B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint, 2017. DOI: 10.48550/arXiv.1704.04861.
|
25. |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need// Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
|
26. |
Liu Z, Mao H, Wu C Y, et al. A ConvNet for the 2020s. arXiv preprints, 2022. DOI: 10.48550/arXiv. 2201.03545.
|
27. |
Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
|
28. |
Oktay O, Schlemper J, Folgoc L L, et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv preprints, 2018. DOI: 10.48550/arXiv.1804.03999.
|
29. |
Hernandez Petzsche M R, de la Rosa E, Hanning U, et al. ISLES 2022: a multi-center magnetic resonance imaging stroke lesion segmentation dataset. Scientific Data, 2022, 9(1): 762.
|
30. |
Milletari F, Navab N, Ahmadi S A. V-net: fully convolutional neural networks for volumetric medical image segmentation//2016 Fourth International Conference on 3D Vision (3DV). IEEE, 2016: 565-571.
|
31. |
Hatamizadeh A, Tang Y, Nath V, et al. UNETR: transformers for 3D medical image segmentation//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, IEEE, 2022: 574-584.
|
32. |
Hatamizadeh A, Nath V, Tang Y, et al. Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images//International MICCAI Brainlesion Workshop, Cham: Springer International Publishing, 2021: 272-284.
|