1. |
Jin J, Sun H, Daly I, et al. A novel classification framework using the graph representations of electroencephalogram for motor imagery based brain-computer interface. IEEE Trans Neural Syst Rehab Eng, 2022, 30: 20-29.
|
2. |
Li J W, Barma S, Mak P U, et al. Single-channel selection for EEG-based emotion recognition using brain rhythm sequencing. IEEE J Biomed Health Inform, 2022, 26(6): 2493-2503.
|
3. |
Bruner E, Battaglia-Mayer A, Caminiti R. The parietal lobe evolution and the emergence of material culture in the human genus. Brain Struct Funct, 2023, 228(1): 145-167.
|
4. |
谢士遥, 汤佳贝, 蔡雨, 等. 脑电BCI系统的软硬件开发平台发展现状. 电子测量与仪器学报, 2022, 36(6): 1-12.
|
5. |
罗建功, 丁鹏, 龚安民, 等. 脑机接口技术的应用、产业转化和商业价值. 生物医学工程学杂志, 2022, 39(2): 405-415.
|
6. |
Varsehi H, Firoozabadi S M P. An EEG channel selection method for motor imagery based brain-computer interface and neurofeedback using Granger causality. Neural Netw. 2021, 133: 193-206.
|
7. |
Lal T N, Schroder M, Hinterberger T, et al. Support vector channel selection in BCI. IEEE Trans Biomed Eng, 2004, 51(6): 1003-1010.
|
8. |
Tiwari A. A logistic binary Jaya optimization-based channel selection scheme for motor-imagery classification in brain-computer interface. Expert Syst Appl, 2023, 223: 119921.
|
9. |
Dhiman R. Electroencephalogram channel selection based on pearson correlation coefficient for motor imagery-brain-computer interface. Measurement: Sensors, 2023, 25: 100616.
|
10. |
Jin J, Liu C, Daly I, et al. Bispectrum-based channel selection for motor imagery based brain-computer interfacing. IEEE Trans Neural Syst Rehab Eng, 2020, 28(10): 2153-2163.
|
11. |
Cox D D, Savoy R L. Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage, 2003, 19(2): 261-270.
|
12. |
Šverko Z, Vrankić M, Vlahinić S, et al. Complex Pearson correlation coefficient for EEG connectivity analysis. Sensors, 2022, 22(4): 1477.
|
13. |
Jin J, Miao Y, Daly I, et al. Correlation-based channel selection and regularized feature optimization for MI-based BCI. Neural Netw, 2019, 118: 262-270.
|
14. |
孟明, 胡家豪, 高云园, 等. 结合互信息通道选择与混合深度神经网络的脑电情感识别方法. 传感技术学报, 2021, 34(8): 7.
|
15. |
Mahamune R, Laskar S H. An automatic channel selection method based on the standard deviation of wavelet coefficients for motor imagery based brain–computer interfacing. Int J Imaging Syst Technol, 2023, 33(2): 714-728.
|
16. |
Mu W, Wang J, Wang L, et al. A channel selection method for motor imagery EEG based on Fisher score of OVR-CSP//2023 11th International Winter Conference on Brain-Computer Interface (BCI). Gangwon: IEEE, 2023: 1-4.
|
17. |
Ramoser H, Müller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehab Eng, 2000, 8(4): 441-446.
|
18. |
Qi Y, Ding F, Xu F, et al. Channel and feature selection for a motor imagery-based BCI system using multilevel particle swarm optimization. Comput Intell Neurosci 2020, 2020(11): 8890477.
|
19. |
Kennedy J, Eberhart R. Particle swarm optimization//Proceedings of ICNN'95-International Conference on Neural Networks. Perth: IEEE, 1995, 4: 1942-1948.
|
20. |
Padfield N, Ren J, Murray P, et al. Sparse learning of band power features with genetic channel selection for effective classification of EEG signals. Neurocomputing, 2021, 463: 566-579.
|
21. |
Eid M M, Alassery F, Ibrahim A, et al. Metaheuristic optimization algorithm for signals classification of electroencephalography channels. Comput Materials Contin, 2022, 71(3): 4627-4641.
|
22. |
Sun H, Jin J, Kong W, et al. Novel channel selection method based on position priori weighted permutation entropy and binary gravity search algorithm. Cogn Neurodyn, 2021, 15(1): 141-156.
|
23. |
Martínez-Cagigal V, Santamaría-Vázquez E, Hornero R. Brain–computer interface channel selection optimization using meta-heuristics and evolutionary algorithms. Appl Soft Comput, 2022, 115: 108176.
|
24. |
Xu M, Chen Y, Wang D, et al. Multi-objective optimization approach for channel selection and cross-subject generalization in RSVP-based BCIs. J Neural Eng, 2021, 18(4): 046076.
|
25. |
Tiwari A, Chaturvedi A. Automatic EEG channel selection for multiclass brain-computer interface classification using multi-objective improved firefly algorithm. Multimed Tools Appl, 2023, 82(4): 5405-5433.
|
26. |
Shi B, Yue Z, Yin S, et al. Adaptive binary multi-objective harmony search algorithm for channel selection and cross-subject generalization in motor imagery-based BCI. J Neural Eng, 2022, 19(4): 046022.
|
27. |
Sun B, Liu Z, Wu Z, et al. Graph convolution neural network based end-to-end channel selection and classification for motor imagery brain-computer interfaces. IEEE Trans Industr Inform, 2022, 19: 9314-9324.
|
28. |
Strypsteen T, Bertrand A. End-to-end learnable EEG channel selection for deep neural networks with Gumbel-softmax. J Neural Eng, 2021, 18(4): 0460a9.
|
29. |
Yan M, Lv Z, Sun W, et al. An improved common spatial pattern combined with channel-selection strategy for electroencephalography-based emotion recognition. Med Eng Phys, 2020, 83: 130-141.
|
30. |
Zhao X, Jin J, Xu R, et al. A regional smoothing block sparse Bayesian learning method with temporal correlation for channel selection in P300 speller. Front Hum Neurosci, 2022, 16: 875851.
|
31. |
Topic A, Russo M, Stella M, et al. Emotion recognition using a reduced set of EEG channels based on holographic feature maps. Sensors, 2022, 22(9): 3248.
|
32. |
Zhang J, Wang M. A survey on robots controlled by motor imagery brain-computer interfaces. Cogn Robot, 2021, 1: 12-24.
|
33. |
Ortiz M, de la Ossa L, Juan J, et al. An EEG database for the cognitive assessment of motor imagery during walking with a lower-limb exoskeleton. Sci Data, 2023, 10(1): 343.
|
34. |
Liu Y, Wang Z, Huang S, et al. EEG characteristic investigation of the sixth-finger motor imagery and optimal channel selection for classification. J Neural Eng, 2022, 19(1): 016001.
|
35. |
Zeng Y, Wu Q, Yang K, et al. EEG-based identity authentication framework using face rapid serial visual presentation with optimized channels. Sensors, 2018, 19(1): 6.
|
36. |
Wang K, Zhai D H, Xiong Y, et al. An MVMD-CCA recognition algorithm in SSVEP-based BCI and its application in robot control. IEEE Trans Neural Netw Learni Syst, 2021, 33(5): 2159-2167.
|
37. |
Meng L, Jin J, Wang X. A comparison of three electrode channels selection methods applied to SSVEP BCI//2011 4th International Conference on Biomedical Engineering and Informatics (BMEI). Shanghai: IEEE, 2011, 1: 584-587.
|
38. |
Ghembaza F, Djebbari A. A robust dynamic EEG channel selection using time–frequency extended Renyi entropy//2022 7th International Conference on Image and Signal Processing and their Applications (ISPA). Mostaganem: IEEE, 2022: 1-8.
|
39. |
汝彦冬, 李金宝, 吕兴凤, 等. 基于脑电通道动态选择方法的癫痫检测. 仪器仪表学报, 2023(2): 180-188.
|