1. |
于婉琦, 周延民, 赵静辉. 口腔种植体新材料的研究现状. 国际口腔医学杂志, 2019, 46(4): 488-496.
|
2. |
崔骥, 刘晔, 李永强, 等. ZnO/TiO2复合薄膜的表面形貌分析及光散射特性研究. 中国激光, 2011, 38(2): 191-197.
|
3. |
盛美春, 罗小龙, 谢广平. 紫外线光功能化对二氧化钛纳米管表面改性钛种植体骨结合的影响. 口腔材料器械杂志, 2023, 32(2): 116-119.
|
4. |
Kim J, Lee H, Jang T, et al. Characterization of titanium surface modification strategies for osseointegration enhancement. Metals, 2021, 11(4): 618.
|
5. |
Ding Y, Tao B L, Ma R C , et al. Surface modification of titanium implant for repairing/improving microenvironment of bone injury and promoting osseointegration. Journal of Materials Science & Technology, 2023, 143: 1-11.
|
6. |
李莺, 李长义. 钛种植体表面改性策略及对骨整合的影响. 中国组织工程研究, 2013, 17(29): 5395-5402.
|
7. |
Lo K W, Ashe K M, Kan H M, et al. The role of small molecules in musculoskeletal regeneration. Regenerative Medicine, 2012, 7(4): 535-549.
|
8. |
Yun Y R, Jang J H, Jeon E, et al. Administration of growth factors for bone regeneration. Regenerative Medicine, 2012, 7(3): 369-385.
|
9. |
蒋滔, 程祥荣, 王贻宁, 等. 不同表面处理方法对纯钛表面形貌及成分的影响. 生物医学工程学杂志, 2006, 23(4): 814-817.
|
10. |
Ariganello M B, Guadarrama Bello D, Rodriguez-Contreras A, et al. Surface nanocavitation of titanium modulates macrophage activity. International Journal of Nanomedicine, 2018, 13: 8297-8308.
|
11. |
Wang Z, Ren B. Preparation of superhydrophobic titanium surface via the combined modification of hierarchical micro/nanopatterning and fluorination. Journal of Coatings Technology and Research, 2022, 19(3): 967-975.
|
12. |
Luo H, Diao X, Qian F, et al. Fabrication of a micro/nanocomposite structure on the surface of high oxygen concentration titanium to promote bone formation. Biomaterials Advances, 2023, 154: 213631.
|
13. |
Souza J C M, Sordi M B, Kanazawa M, et al. Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomaterialia, 2019, 94: 112-131.
|
14. |
钱捷, 杨策尧, 盛迅, 等. 钛种植体表面微形态对成骨细胞生长影响的体外研究. 临床口腔医学杂志, 2005, 6: 348-350.
|
15. |
Spriano S, Ferraris S, Bollati D, et al. The combined action of UV irradiation and chemical treatment on the titanium surface of dental implants. Applied Surface Science, 2015, 349: 599-608.
|
16. |
Tang S, Wang Y, Zong Z Y, et al. Enhanced osteogenic activity of titania-modified zirconia implant by ultraviolet irradiation. Frontiers in Bioengineering and Biotechnology, 2022, 10: 945869.
|
17. |
van Velzen F J, Ofec R, Schulten E A, et al. 10-year survival rate and the incidence of peri-implant disease of 374 titanium dental implants with a SLA surface: a prospective cohort study in 177 fully and partially edentulous patients. Clinical Oral Implants Research, 2015, 26(10): 1121-1128.
|
18. |
Aita H, Hori N, Takeuchi M, et al. The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials, 2009, 30(6): 1015-1025.
|
19. |
Zhang W, Liu J, Shi H, et al. Communication between nitric oxide synthase and positively-charged surface and bone formation promotion. Colloids and Surfaces B: Biointerfaces, 2016, 148: 354-362.
|
20. |
Liao Y, Li L, Yang P, et al. Tailoring of TiO2 films by H2SO4 treatment and UV irradiation to improve anticoagulant ability and endothelial cell compatibility. Colloids and Surfaces B: Biointerfaces, 2017, 155: 314-322.
|
21. |
Wang J W, Ma Y, Guan J, et al. Characterizations of anodic oxide films formed on Ti6Al4V in the silicate electrolyte with sodium polyacrylate as an additive. Surface and Coatings Technology, 2018, 338: 14-21.
|
22. |
Jemt T, Johansson J. Implant treatment in the edentulous maxillae: a 15-year follow-up study on 76 consecutive patients provided with fixed prostheses. Clinical Implant Dentistry and Related Research, 2006, 8(2): 61-69.
|
23. |
Gittens R A, McLachlan T, Olivares-Navarrete R, et al. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials, 2011, 32(13): 3395-3403.
|
24. |
Rupp F, Scheideler L, Olshanska N, et al. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. Journal of Biomedical Materials Research Part A, 2006, 76(2): 323-334.
|
25. |
Carradò A, Perrin-Schmitt F, Le Q V, et al. Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants for improved osteointegration. Dental Materials, 2017, 33(3): 321-332.
|
26. |
Guo Q, Zhou C, Ma Z, et al. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Advanced Materials, 2019, 31(50): e1901997.
|
27. |
张悦, 夏海斌. 碱热处理制备生物活性钛种植体. 国际口腔医学杂志, 2007, 3: 216-219.
|
28. |
Müller L, Müller F A. Preparation of SBF with different HCO3— content and its influence on the composition of biomimetic apatites. Acta Biomaterialia, 2006, 2(2): 181-189.
|
29. |
Fujibayashi S, Nakamura T, Nishiguchi S, et al. Bioactive titanium: effect of sodium removal on the bone-bonding ability of bioactive titanium prepared by alkali and heat treatment. Journal of Biomedical Materials Research, 2001, 56(4): 562-570.
|
30. |
Roy M, Pompella A, Kubacki J, et al. Photofunctionalization of dental zirconia oxide: surface modification to improve bio-integration preserving crystal stability. Colloids Surfaces B: Biointerfaces, 2017, 156: 194-202.
|