1. |
You E, Kim D, Harris R, et al. Effects of auricular acupressure on pain management: a systematic review. Pain Manag Nurs, 2019, 20(1): 17-24.
|
2. |
Huang C F, Guo S E, Chou F H. Auricular acupressure for overweight and obese individuals: A systematic review and meta-analysis. Medicine, 2019, 98(26): e16144.
|
3. |
Borlack R E, Shan S, Zong A M, et al. Electrodermal activity of auricular acupoints in pediatric patients with functional abdominal pain disorders. J Pediatr Gastr Nutr, 2021, 73(2): 184-191.
|
4. |
Wirz-Ridolfi A. The history of ear acupuncture and ear cartography: why precise mapping of auricular points is important. Med Acupunct, 2019, 31(3): 145-156.
|
5. |
Yang Y, Wen J, Hong J. The effects of auricular therapy for cancer pain: a systematic review and meta-analysis. Evid Based Complement Alternat Med, 2020, 2020: 1618767.
|
6. |
Liu M, Tong Y, Chai L, et al. Effects of auricular point acupressure on pain relief: a systematic review. Pain Manag Nurs, 2021, 22(3): 268-280.
|
7. |
Yeh C H, Huang L C. Comprehensive and systematic auricular diagnosis protocol. Med Acupunct, 2013, 25(6): 423-436.
|
8. |
Tournier J D, Smith R, Raffelt D, et al. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage, 2019, 202: 116137.
|
9. |
Yadav S S, Jadhav S M. Deep convolutional neural network based medical image classification for disease diagnosis. J Big Data, 2019, 6(1): 1-18.
|
10. |
Shen D, Wu G, Suk H I. Deep learning in medical image analysis. Annu Rev Biomed Eng, 2017, 19: 221-248.
|
11. |
中华人民共和国国家质量监督检验检疫总局. GB/T13734—2008 耳穴名称与定位. 北京: 中国标准出版社, 2008.
|
12. |
Ao C, Jin S, Ding H, et al. Application and development of artificial intelligence and intelligent disease diagnosis. Curr Pharm Design, 2020, 26(26): 3069-3075.
|
13. |
Tang Y, Chen M, Wang C, et al. Recognition and localization methods for vision-based fruit picking robots: A review. Front Plant Sci, 2020, 11: 510.
|
14. |
Wu X, Sahoo D, Hoi S C H. Recent advances in deep learning for object detection. Neurocomputing, 2020, 396: 39-64.
|
15. |
Ahila Priyadharshini R, Arivazhagan S, Arun M. A deep learning approach for person identification using ear biometrics. Appl Intell, 2021, 51: 2161-2172.
|
16. |
Hassaballah M, Alshazly H A, Ali A A, Ear recognition using local binary patterns: A comparative experimental study. Expert Syst Appl, 2019, 118: 182-200.
|
17. |
Cintas C, Quinto-Sánchez M, Acuña V, et al. Automatic ear detection and feature extraction using geometric morphometrics and convolutional neural networks. IET Biometrics, 2017, 6(3): 211-223.
|
18. |
Ren Shaoqing, He Kaiming, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE T Pattern Anal, 2016, 39(6): 1137-1149.
|
19. |
Zhang Y, Mu Z, Yuan L, et al. USTB-Helloear: A large database of ear images photographed under uncontrolled conditions// 9th International Conference on Image and Graphics (ICIG). Shanghai: Springer, 2017: 405-416.
|
20. |
Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Utah: IEEE, 2018: 8759-8768.
|
21. |
Fu C Y, Shvets M, Berg A C. RetinaMask: Learning to predict masks improves state-of-the-art single-shot detection for free. arXiv, 2019: 1901.03353.
|
22. |
Li Y, Qi H, Dai J, et al. Fully convolutional instance-aware semantic segmentation// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (ICCV). Venice: IEEE, 2017: 2359-2367.
|
23. |
He K, Gkioxari G, Dollár P, et al. Mask R-CNN// Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 2961-2969.
|
24. |
Wen J, Jiang M, Wang Y, et al. An auricular division method based on ASM algorithm. Technol Health Care, 2021, 29(S1): 487-495.
|