1. |
Adigun O, Ronke B, Mohammed R, et al. Detection of fracture bones in X-ray images categorization. J Adv Math Comput Sci, 2020, 35: 1-11.
|
2. |
Hržić F, Štajduhar I, Tschauner S, et al. Local-entropy based approach for X-ray image segmentation and fracture detection. Entropy, 2019, 21(4): 338.
|
3. |
Kitamura G. Deep learning evaluation of pelvic radiographs for position, hardware presence and fracture detection. Eur J Radiol, 2020, 130: 109139.
|
4. |
Guan B, Zhang G, Yao J, et al. Arm fracture detection in X-rays based on improved deep convolutional neural network. Comput Electr Eng, 2020, 81: 106530.
|
5. |
Meena T, Roy S. Bone fracture detection using deep supervised learning from radiological images: a paradigm shift. Diagnostics, 2022, 12(10): 2420.
|
6. |
Guan B, Yao J, Wang S, et al. Automatic detection and localization of thighbone fractures in X-ray based on improved deep learning method. Comput Vis Image Underst, 2022, 216: 103345.
|
7. |
Kuo R Y L, Harrison C, Curran T A, et al. Artificial intelligence in fracture detection: a systematic review and meta-analysis. Radiology, 2022, 304(1): 50-62.
|
8. |
Krogue J D, Cheng K V, Hwang K M, et al. Automatic hip fracture identification and functional subclassification with deep learning. Radiol Artif Intell, 2020, 2(2): e190023.
|
9. |
Kim D H, MacKinnon T. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin Radiol, 2018, 73(5): 439-445.
|
10. |
Raisuddin A M, Vaattovaara E, Nevalainen M, et al. Critical evaluation of deep neural networks for wrist fracture detection. Sci Rep, 2021, 11(1): 1-11.
|
11. |
Hardalaç F, Uysal F, Peker O, et al. Fracture detection in wrist X-ray images using deep learning-based object detection models. Sensors, 2022, 22(3): 1285.
|
12. |
Anttila T T, Karjalainen T V, Mäkelä T O, et al. Detecting distal radius fractures using a segmentation-based deep learning model. J Digit Imaging, 2023, 36: 679-687.
|
13. |
Yahalomi E, Chernofsky M, Werman M. Detection of distal radius fractures trained by a small set of X-ray images and faster R-CNN. Adv Intell Syst Comput, 2019, 997: 1-9.
|
14. |
Min H, Rabi Y, Wadhawan A, et al. Automatic classification of distal radius fracture using a two-stage ensemble deep learning framework. Phys Eng Sci Med, 2023, 46(2): 877-886.
|
15. |
Gan K, Xu D, Lin Y, et al. Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments. Acta Orthop, 2019, 90(4): 394-400.
|
16. |
Suzuki T, Maki S, Yamazaki T, et al. Detecting distal radial fractures from wrist radiographs using a deep convolutional neural network with an accuracy comparable to hand orthopedic surgeons. J Digit Imaging, 2022, 35: 39-46.
|
17. |
Lee K M, Lee S Y, Han C S, et al. Long bone fracture type classification for limited number of CT data with deep learning// Proceedings of the 35th Annual ACM Symposium on Applied Computing. Brno: ACM, 2020: 1090-1095.
|
18. |
Warin K, Limprasert W, Suebnukarn S, et al. Maxillofacial fracture detection and classification in computed tomography images using convolutional neural network-based models. Sci Rep, 2023, 13(1): 3434.
|
19. |
Isola P, Zhu J Y, Zhou T H, et al. Image-to-image translation with conditional adversarial networks// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2020: 5967-5976.
|
20. |
Shi W Z, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1874-1883.
|
21. |
Oktay O, Schlemper J, Le Folgoc L L, et al. Attention U-Net: learning where to look for the pancreas. arXiv, 2018: 1804.03999.
|
22. |
Yang Y, Mehrkanoon S. AA-TransUNet: Attention augmented transunet for nowcasting tasks// International Joint Conference on Neural Networks. Padua: IEEE, 2022: 1-8.
|
23. |
Ma J, Wang B. Segment anything in medical images. arXiv, 2023: 2304.12306.
|
24. |
Cheng J, Tian S, Yu L, et al. ResGANet: residual group attention network for medical image classification and segmentation. Med Image Anal, 2022, 76: 102313.
|
25. |
Chen H, Sun K, Tian Z, et al. BlendMask: top-down meets bottom-up for instance segmentation// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 8573-8581.
|
26. |
Zheng S, Lu J, Zhao H, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 6881-6890.
|
27. |
Kirillov A, Mintun E, Ravi N, et al. Segment anything. arXiv, 2023: 2304.02643.
|