1. |
Milavetz G. Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach. J Pharm Technol, 2008, 24(2): 122-122.
|
2. |
Taleghani N, Taghipour F. Diagnosis of covid-19 for controlling the pandemic: a review of the state-of-the-art. Biosen Bioelectr, 2021, 174: 112830.
|
3. |
Laguarta J, Huet F, Subirana B. COVID-19 artificial intelligence diagnosis using only cough recordings. IEEE Open J Eng Med Biol, 2020, 1(1): 275-281.
|
4. |
Busschots C, Keymolen A, Verbanck S, et al. Adaptive excitation signals for low-frequency forced oscillation technique measurements in patients. IEEE Trans Instrum Meas, 2021, 70: 1-9.
|
5. |
Solomon J J, Heyman B, Ko J P, et al. CT of post-acute lung complications of COVID-19. Radiology, 2021, 301(2): E383-E395.
|
6. |
Eddy R L, Westcott A, Maksym G N. Oscillometry and pulmonary magnetic resonance imaging in asthma and COPD. Physiol Rep, 2019, 7(1): e13955.
|
7. |
Cox E G M, Koster G, Baron A, et al. Should the ultrasound probe replace your stethoscope? A SICS-I sub-study comparing lung ultrasound and pulmonary auscultation in the critically ill. Crit Care, 2020, 24(1): 14.
|
8. |
Hoesterey D, Das N, Janssens W, et al. Spirometric indices of early airflow impairment in individuals at risk of developing COPD: Spirometry beyond FEV1/FVC. Respir Med, 2019, 156: 58-68.
|
9. |
梁晓林, 高怡, 郑劲平. 2020年欧洲呼吸协会《呼吸振荡检查技术指南》解读. 中国循证医学杂, 2022, 22(1): 19-25.
|
10. |
Foy B H, Natarajan S, Munawar A, et al. Characterising the role of small airways in severe asthma using low frequency forced oscillations: A combined computational and clinical approach. Respir Med, 2020, 170(1): 106022.
|
11. |
Kreetapirom P, Kiewngam P, Jotikasthira W, et al. Forced oscillation technique as a predictor for loss of control in asthmatic children. Asia Pac Allergy, 2020, 10(1): e3.
|
12. |
Soares M, Richardson M, Thorpe J. Comparison of forced and impulse oscillometry measurements: A clinical population and printed airway model study. Sci Rep, 2019, 9(1): 2130.
|
13. |
Brashier B, Salvi S. Measuring lung function using sound waves: role of the forced oscillation technique and impulse oscillometry system. Breathe, 2015, 11(1): 57.
|
14. |
Ionescu C M. The human respiratory system. London: Springer London, 2013.
|
15. |
周垂柳, 王武, 谢联昇, 等. 一种便携式强迫振荡呼吸阻抗测试仪的设计与实现. 生物医学工程学杂志, 2016, 33(5): 951-957.
|
16. |
张楠, 刘晓莉, 周娟, 等. 基于强迫振荡技术的肺功能测量系统研究. 生物医学工程学杂志, 2016, 33(6): 1110-1115.
|
17. |
Cao Jian, Sabharwal A. Portable forced oscillation device for point-of-care pulmonary function testing// 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando: IEEE, 2016: 2282-2286.
|
18. |
Chang Wei, Deng Linhong. Development of a small portable device for measuring respiratory system resistance based on forced oscillation technique. J Adv Biomed Eng Technol, 2016, 3(1): 14-20.
|
19. |
Ionescu C M. From viscoelastic models to lung function devices// 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Budapest: IEEE, 2016: 002533-002540.
|
20. |
Ionescu C M, Copot D. Monitoring respiratory impedance by wearable sensor device: Protocol and methodology. Biomed Signal Process Control, 2017, 36(3): 57-62.
|
21. |
Olarte O, De Keyser R, Ionescu C M. Fan-based device for non-invasive measurement of respiratory impedance: Identification, calibration and analysis. Biomed Signal Process Control, 2016, 30(1): 127-133.
|
22. |
Eloot B. Development of a device for measuring lung impedance using forced oscillation technique. Ghent: Ghent University, 2014.
|
23. |
Copot D, De Keyser R, Derom E, et al. Reducing bias in fractional order impedance estimation for lung function evaluation. Biomed Signal Process Control, 2018, 39(1): 74-80.
|
24. |
Ghita M, Copot D, Ghita M, et al. Low frequency forced oscillation lung function test can distinguish dynamic tissue non-linearity in COPD patients. Front Physiol, 2019, 10(1): 1390.
|
25. |
Roy G S, Daphtary N, Johnson O, et al. Measuring the mechanical input impedance of the respiratory system with breath-driven flow oscillations. J Appl Physiol, 2021, 130(4): 1064-1071.
|
26. |
Demchuk A M, Chatburn R L. Performance characteristics of positive expiratory pressure devices. Respir Care, 2021, 66(3): 482-493.
|
27. |
King G G, Bates J, Berger K I, et al. Technical standards for respiratory oscillometry. Eur Respir J, 2020, 55(2): 1900753.
|
28. |
张政波, 倪路, 刘晓莉, 等. 振荡肺功原理及技术实现. 中国医疗器械杂志, 2015, 39(6): 432-436.
|