1. |
伏云发, 王帆, 丁鹏, 等. 脑-计算机接口. 北京: 国防工业出版社, 2023: 631-646.
|
2. |
伏云发, 郭衍龙, 张夏冰, 等. 脑-机接口—革命性的人机交互. 北京: 国防工业出版社, 2020: 52-56.
|
3. |
Willett F R, Avansino D T, Hochberg L R, et al. High-performance brain-to-text communication via handwriting. Nature, 2021, 593(7858): 249-254.
|
4. |
Willett F R, Kunz E M, Fan C, et al. A high-performance speech neuroprosthesis. Nature, 2023, 620(7976): 1031-1036.
|
5. |
Metzger S L, Littlejohn K T, Silva A B, et al. A high-performance neuroprosthesis for speech decoding and avatar control. Nature, 2023, 620(7976): 1037-1046.
|
6. |
Cervera M A, Soekadar S R, Ushiba J, et al. Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Annals of Clinical and Translational Neurology, 2018, 5(5): 651-663.
|
7. |
伏云发, 杨秋红, 徐保磊, 等. 脑-机接口原理与实践. 北京: 国防工业出版社, 2017: 5-6.
|
8. |
Hramov A E, Maksimenko V A, Pisarchik A N. Physical principles of brain–computer interfaces and their applications for rehabilitation, robotics and control of human brain states. Physics Reports, 2021, 918: 1-133.
|
9. |
Almarzouki H Z, Alsulami H, Rizwan A, et al. An internet of medical things-based model for real-time monitoring and averting stroke sensors. Journal of Healthcare Engineering, 2021, 2021: 1233166.
|
10. |
Matarasso A K, Rieke J D, White K, et al. Combined real-time fMRI and real time fNIRS brain computer interface (BCI): training of volitional wrist extension after stroke, a case series pilot study. PLoS One, 2021, 16(5): e0250431.
|
11. |
Pais-Vieira C, Gaspar P, Matos D, et al. Embodiment comfort levels during motor imagery training combined with immersive virtual reality in a spinal cord injury patient. Frontiers in Human Neuroscience, 2022, 16: 909112.
|
12. |
Aurucci G V, Preatoni G, Damiani A, et al. Brain-computer interface to deliver individualized multisensory intervention for neuropathic pain. Neurotherapeutics, 2023, 20(5): 1316-1329.
|
13. |
Nenadic Z. Brain–computer interfaces for human gait restoration. Control Theory and Technology, 2021: 1-13.
|
14. |
Colucci A, Vermehren M, Cavallo A, et al. Brain–computer interface-controlled exoskeletons in clinical neurorehabilitation: ready or not?. Neurorehabilitation and Neural Repair, 2022, 36(12): 747-756.
|
15. |
Klein E. Ethics and the emergence of brain-computer interface medicine. Handbook of Clinical Neurology, 2020, 168: 329-339.
|
16. |
张喆, 赵旭, 马艺昕, 等. 脑机接口技术伦理规范考量. 生物医学工程学杂志, 2023, 40(2): 358-364.
|
17. |
Ma Y, Gong A, Nan W, et al. Personalized brain–computer interface and its applications. Journal of Personalized Medicine, 2022, 13(1): 46.
|
18. |
伏云发, 龚安民, 南文雅. 神经反馈原理与实践. 北京: 电子工业出版社, 2021: 33-34.
|
19. |
Andersen R A, Aflalo T. Preserved cortical somatotopic and motor representations in tetraplegic humans. Current Opinion in Neurobiology, 2022, 74: 102547.
|
20. |
Jovanovic L I, Kapadia N, Zivanovic V, et al. Brain-computer interface-triggered functional electrical stimulation therapy for rehabilitation of reaching and grasping after spinal cord injury: a feasibility study. Spinal Cord Series and Cases, 2021, 7(1): 24.
|
21. |
McGeady C, Vučković A, Singh Tharu N, et al. Brain-computer interface priming for cervical transcutaneous spinal cord stimulation therapy: an exploratory case study. Frontiers in Rehabilitation Sciences, 2022, 3: 896766.
|
22. |
Banach K, Małecki M, Rosół M, et al. Brain–computer interface for electric wheelchair based on alpha waves of EEG signal. Bio-Algorithms and Med-Systems, 2021, 17(3): 165-172.
|
23. |
Zhu M, Chen J, Li H, et al. Vehicle driver drowsiness detection method using wearable EEG based on convolution neural network. Neural Computing and Applications, 2021, 33(20): 13965-13980.
|
24. |
Flesher S N, Downey J E, Weiss J M, et al. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science, 2021, 372(6544): 831-836.
|
25. |
伏云发, 龚安民, 陈超, 等. 面向实用的脑-机接口: 缩小研究与实际应用之间的差距. 北京: 电子工业出版社, 2022: 45-47.
|
26. |
吕晓彤, 丁鹏, 李思语, 等. 脑机接口人因工程及应用: 以人为中心的脑机接口设计和评价方法. 生物医学工程学杂志, 2021, 38(2): 210-223.
|
27. |
Lyu X, Ding P, Li S, et al. Human factors engineering of BCI: an evaluation for satisfaction of BCI based on motor imagery. Cognitive Neurodynamics, 2023, 17(1): 105-118.
|
28. |
人工智能医疗器械创新合作平台脑机接口研究工作组, 中国信息通信研究院云计算与大数据研究所. 脑机接口技术在医疗健康领域应用白皮书(2023年). 北京: 人工智能医疗器械创新合作平台, 2023.
|
29. |
Vansteensel M J, Klein E, van Thiel G, et al. Towards clinical application of implantable brain-computer interfaces for people with late-stage ALS: medical and ethical considerations. Journal of Neurology, 2023, 270(3): 1323-1336.
|
30. |
Merk T, Peterson V, Lipski W J, et al. Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson’s disease. Elife, 2022, 11: e75126.
|
31. |
Bergeron D, Iorio-Morin C, Bonizzato M, et al. Use of invasive brain-computer interfaces in pediatric neurosurgery: technical and ethical considerations. Journal of Child Neurology, 2023, 38(3-4): 223-238.
|
32. |
Klein E, Ojemann J. Informed consent in implantable BCI research: identification of research risks and recommendations for development of best practices. Journal of Neural Engineering, 2016, 13(4): 043001.
|
33. |
Klein E, Brown T, Sample M, et al. Engineering the brain: ethical issues and the introduction of neural devices. Hastings Center Report, 2015, 45(6): 26-35.
|
34. |
Vansteensel M J, Branco M P, Leinders S, et al. Methodological recommendations for studies on the daily life implementation of implantable communication-brain–computer interfaces for individuals with locked-in syndrome. Neurorehabilitation and Neural Repair, 2022, 36(10-11): 666-677.
|
35. |
Xue H, Wang D, Jin M, et al. Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG acquisition. Microsystems & Nanoengineering, 2023, 9: 79.
|
36. |
Wang Z, Shi N, Zhang Y, et al. Conformal in-ear bioelectronics for visual and auditory brain-computer interfaces. Nature Communications, 2023, 14(1): 4213.
|