1. |
Matta A G, Yaacoub N, Nader V, et al. Coronary artery aneurysm: a review. World J Cardiol, 2021, 13(9): 446-455.
|
2. |
Kim J H, Han H, Moon Y J, et al. Hemodynamic features of microsurgically identified, thin-walled regions of unruptured middle cerebral artery aneurysms characterized using computational fluid dynamics. Neurosurgery, 2020, 86(6): 851-859.
|
3. |
Oliveira I L, Santos G B, Militzer J, et al. A longitudinal study of a lateral intracranial aneurysm: identifying the hemodynamic parameters behind its inception and growth using computational fluid dynamics. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43: 138.
|
4. |
刘梦辰, 潘霁超, 蔡彦, 等. 动脉粥样硬化斑块的生物力学模型和数值模拟研究. 生物医学工程学杂志, 2020, 37(6): 948-955.
|
5. |
何家胜, 钟伟健. 动脉粥样硬化斑块的断裂力学数值模拟研究. 生物医学工程学杂志, 2021, 38(6): 1097-1102, 1110.
|
6. |
Teng B, Zhou Z, Zhao Y, et al. Combined curvature and wall shear stress analysis of abdominal aortic aneurysm: an analysis of rupture risk factors. Cardiovasc Intervent Radiol, 2022, 45(6): 752-760.
|
7. |
Zhao J, Xiang X, Zhang H, et al. A study of the association between carotid artery curvature and intracranial aneurysms. Neurologist, 2023, 28(2): 99-103.
|
8. |
Rashad S, Sugiyama S I, Niizuma K, et al. Impact of bifurcation angle and inflow coefficient on the rupture risk of bifurcation type basilar artery tip aneurysms. J Neurosurg, 2018, 128(3): 723-730.
|
9. |
Murayama Y, Fujimura S, Suzuki T, et al. Computational fluid dynamics as a risk assessment tool for aneurysm rupture. Neurosurg Focus, 2019, 47(1): E12.
|
10. |
Xiang J, Tutino V M, Snyder K V, et al. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment. AJNR Am J Neuroradiol, 2014, 35(10): 1849-1857.
|
11. |
Liang L, Steinman D A, Brina O, et al. Towards the clinical utility of CFD for assessment of intracranial aneurysm rupture-a systematic review and novel parameter-ranking tool. J Neurointerv Surg, 2019, 11(2): 153-158.
|
12. |
Cebral J R, Vazquez M, Sforza D M, et al. Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture. J Neurointerv Surg, 2015, 7(7): 530-536.
|
13. |
Mu L, Liu X, Liu M, et al. In vitro study of endothelial cell morphology and gene expression in response to wall shear stress induced by arterial stenosis. Front Bioeng Biotechnol, 2022, 10: 854109.
|
14. |
Mu L, Li X, Chi Q, et al. Experimental and numerical study of the effect of pulsatile flow on wall displacement oscillation in a flexible lateral aneurysm model. Acta Mechanica Sinica, 2019, 35: 1120-1129.
|
15. |
王浩然, 张慧霞, 王文馨, 等. 左前降支冠状动脉瘤搭桥手术血流动力学研究. 北京生物医学工程, 2018, 37(5): 448-454, 466.
|
16. |
Indolfi C, Achille F, Tagliamonte G, et al. Polytetrafluoroethylene stent deployment for a left anterior descending coronary aneurysm complicated by late acute anterior myocardial infarction. Circulation, 2005, 112(5): e70-e71.
|
17. |
Negro F, Gentile F, Rizza A, et al. Etiology, clinical presentation, and management of left main coronary artery aneurysms. J Card Surg, 2022, 37(11): 3675-3686.
|
18. |
Fan T, Zhou Z, Fang W, et al. Morphometry and hemodynamics of coronary artery aneurysms caused by atherosclerosis. Atherosclerosis, 2019, 284: 187-193.
|
19. |
Abdollahi R, Vahidi B, Shojaee P, et al. A comparative study between CFD and FSI hemodynamic parameters in a patientspecific giant saccular cerebral aneurysm. AUT Journal of Modeling and Simulation, 2021, 53(1): 23-38.
|
20. |
Wang H, Anzai H, Liu Y, et al. Hemodynamic-based evaluation on thrombosis risk of fusiform coronary artery aneurysms using computational fluid dynamic simulation method. Complexity, 2020, 2020: 8507273.
|
21. |
Philip N T, Bolem S, Sudhir B J, et al. Hemodynamics and bio-mechanics of morphologically distinct saccular intracranial aneurysms at bifurcations: idealised vs patient-specific geometries. Comput Methods Programs Biomed, 2022, 227: 107237.
|
22. |
Pivkin I V, Richardson P D, Laidlaw D H, et al. Combined effects of pulsatile flow and dynamic curvature on wall shear stress in a coronary artery bifurcation model. J Biomech, 2005, 38(6): 1283-1290.
|
23. |
Medrano-Gracia P, Ormiston J, Webster M, et al. A study of coronary bifurcation shape in a normal population. J Cardiovasc Transl Res, 2017, 10(1): 82-90.
|
24. |
Chiastra C, Gallo D, Tasso P, et al. Healthy and diseased coronary bifurcation geometries influence near-wall and intravascular flow: A computational exploration of the hemodynamic risk. J Biomech, 2017, 58: 79-88.
|
25. |
Oviedo C, Maehara A, Mintz G S, et al. Intravascular ultrasound classification of plaque distribution in left main coronary artery bifurcations: where is the plaque really located?. Circulation: Cardiovascular Interventions, 2010, 3(2): 105-112.
|
26. |
Rabby M G, Shupti S P, Molla M M. Pulsatile non-newtonian laminar blood flows through arterial double stenoses. Journal of Fluid, 2014, 2014: 757902.
|
27. |
Abbasian M, Shams M, Valizadeh Z, et al. Effects of different non-Newtonian models on unsteady blood flow hemodynamics in patient-specific arterial models with in-vivo validation. Comput Methods Programs Biomed, 2020, 186: 105185.
|
28. |
Evju Ø, Mardal K A. On the assumption of laminar flow in physiological flows: cerebral aneurysms as an illustrative example. Modeling The Heart and The Circulatory System, 2015: 177-195.
|
29. |
Trenti C, Ziegler M, Bjarnegård N, et al. Wall shear stress and relative residence time as potential risk factors for abdominal aortic aneurysms in males: a 4D flow cardiovascular magnetic resonance case–control study. J Cardiovasc Magn Reson, 2022, 24(1): 18.
|
30. |
Castro M A, Putman C M, Sheridan M J, et al. Hemodynamic patterns of anterior communicating artery aneurysms: a possible association with rupture. Am J Neuroradiol, 2009, 30(2): 297-302.
|
31. |
Cebral J R, Mut F, Weir J, et al. Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. Am J Neuroradiol, 2011, 32(1): 145-151.
|
32. |
Hassan T, Timofeev E V, Saito T, et al. A proposed parent vessel geometry-based categorization of saccular intracranial aneurysms: computational flow dynamics analysis of the risk factors for lesion rupture. J Neurosurg, 2005, 103(4): 662-680.
|
33. |
Nixon A M, Gunel M, Sumpio B E. The critical role of hemodynamics in the development of cerebral vascular disease. J Neurosurg, 2010, 112(6): 1240-1253.
|
34. |
Xiang J, Natarajan S K, Tremmel M, et al. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke, 2011, 42: 144-152.
|