1. |
Alzheimer's Disease International. World Alzheimer report 2023. (2023-09-21) [2024-03-29]. https://www.alzint.org/resource/world-alzheimer-report-2023/.
|
2. |
Ballard C, Gauthier S, Corbett A, et al. Alzheimer's disease. Lancet, 2011, 377(9768): 629-638.
|
3. |
Dubois B, Feldman H H, Jacova C, et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol, 2007, 6(8): 734-746.
|
4. |
罗强, 罗雅楠, 冯娜娜, 等. 阿尔茨海默病早期诊断技术前沿概述. 中国公共卫生, 2023, 39(3): 394-399.
|
5. |
Jack C R, Albert M S, Knopman D S, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia, 2011, 7(3): 257-262.
|
6. |
蔡丽娜, 李晓陵, 潘洋, 等. MRI影像组学在轻度认知障碍中的研究进展. 磁共振成像, 2022, 13(6): 131-134.
|
7. |
Zhao X, Ang C K E, Acharya U R, et al. Application of artificial intelligence techniques for the detection of Alzheimer's disease using structural MRI images. Biocybernetics and Biomedical Engineering, 2021, 41(2): 456-473.
|
8. |
Payan A, Montana G. Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks. arXiv preprint, 2015, arXiv: 1502.02506.
|
9. |
Gupta A, Ayhan M S, Maida A S. Natural image bases to represent neuroimaging data//Proceedings of the 30th International Conference on Machine Learning (ICML’13), Atlanta: JMLR, 2013: 987-994.
|
10. |
Wang S H, Phillips P, Sui Y, et al. Classification of Alzheimer's disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J Med Syst, 2018, 42(5): 85.
|
11. |
Jain R, Jain N, Aggarwal A, et al. Convolutional neural network based Alzheimer's disease classification from magnetic resonance brain images. Cogn Syst Res, 2019, 57: 147-159.
|
12. |
Basaia S, Agosta F, Wagner L, et al. Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks. NeuroImage Clin, 2019, 21: 101645.
|
13. |
Oh K, Chung Y C, Kim K W, et al. Classification and visualization of Alzheimer's disease using volumetric convolutional neural network and transfer learning. Sci Rep, 2019, 9(1): 18150.
|
14. |
Liu S, Yadav C, Fernandez-Granda C, et al. On the design of convolutional neural networks for automatic detection of Alzheimer's disease//Proceedings of the Machine Learning for Health NerIPS Workshop, PMLR, 2020, 116: 184-201.
|
15. |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint, 2020, arXiv: 2010.11929.
|
16. |
Chen J, He Y, Frey E C, et al. ViT-V-net: vision transformer for unsupervised volumetric medical image registration. arXiv preprint, 2021, arXiv: 2104.06468.
|
17. |
Kushol R, Masoumzadeh A, Huo D, et al. Addformer: Alzheimer's disease detection from structural MRI using fusion transformer//2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), Kolkata, India: IEEE, 2022: 1-5.
|
18. |
Hoang G M, Kim U H, Kim J G. Vision transformers for the prediction of mild cognitive impairment to Alzheimer's disease progression using mid-sagittal sMRI. Frontiers in Aging Neuroscience, 2023, 15: 1102869.
|
19. |
Cui R, Liu M, Gang L. Longitudinal analysis for Alzheimer's disease diagnosis using RNN//2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington: IEEE, 2018: 1398-1401.
|
20. |
Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu: IEEE, 2017: 2261-2269.
|
21. |
Pini L, Pievani M, Bocchetta M, et al. Brain atrophy in Alzheimer's Disease and aging. Ageing Res Rev, 2016, 30: 25-48.
|
22. |
Pan D, Zeng A, Yang B, et al. Deep learning for brain MRI confirms patterned pathological progression in Alzheimer's disease. Adv Sci (Weinh), 2023, 10(6): e2204717.
|
23. |
Fan L, Li H, Zhuo J, et al. The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb Cortex, 2016, 26(8): 3508-3526.
|
24. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas: IEEE, 2016: 770-778.
|
25. |
Pan D, Luo G, Zeng A, et al. Adaptive 3DCNN-based interpretable ensemble model for early diagnosis of Alzheimer's disease. IEEE Transactions on Computational Social Systems, 2024, 11(1): 247-266.
|
26. |
Touvron H, Cord M, Douze M, et al. Training data-efficient image transformers & distillation through attention. arXiv preprint, 2021, arXiv: 2012.12877.
|