1. |
中国医学会感染病学分会, 中华医学会肝病学分会. 慢性乙型肝炎防治指南(2019版). 中国医学前沿杂志(电子版), 2019, 11(12): 51-77.
|
2. |
崔富强, 庄辉. 解读《2021年艾滋病病毒、病毒性肝炎和性传播感染全球进展报告》: 消除病毒性肝炎进展. 中国医学前沿杂志(电子版), 2021, 13(10): 1-4.
|
3. |
Liu J, Liang W, Jing W, et al. Countdown to 2030: eliminating hepatitis B disease, China. Bull Word Health Organ, 2019, 97(3): 230-238.
|
4. |
World Health Organization (WHO). Global progress report on HIV, viral hepatitis and sexually transmitted infections 2021—Accountability for the global health sector strategies 2016-2021: actions for impact. Geneva: World Health Organization, 2021.
|
5. |
胡钰玲, 李晓阳, 尧捷, 等. 慢性乙型肝炎中医证型与现代医学诊断的相关性研究进展. 中医药导报, 2023, 29(12): 96-101.
|
6. |
裘佳. 全球每30秒就有1人死于病毒性肝炎相关疾病: 三院士呼吁加速肝炎防控进程. 医师报, 2022-7-28(B02).
|
7. |
李兰娟. 人工肝脏. 杭州: 浙江大学出版社, 2012.
|
8. |
Ilaria E D N, Elisabetta M Z, Gionata F, et al. Transports modeling of convection-enhanced hollow fiber membrane bioreactors for therapeutic applications. J Membrane Sci, 2014, 471: 347-361.
|
9. |
Curcio E, Bartolo L D, Barbieri G, et al. Diffusive and convective transport through hollow fiber membranes for liver cell culture. J Biotechnol, 2005, 117: 309-321.
|
10. |
Raff M, Ertl T, Krause B, et al. Mass transfer in artificial liver membrane devices. Desalintion, 2006, 199: 234-235.
|
11. |
Donato D, Storr M, Krause B. Design optimization of hollow fiber dialyzers to enhance internal filtration based on a mathematical model. J Membrane Sci, 2020, 598: 117690.
|
12. |
Nedredal G I, Amiot B P, Nyderg P, et al. Optimization of mass transfer for toxin removal and immunoprotection of hepatocytes in a bioartificial liver. Biotechnol Bioeng, 2009, 104(5): 995-1003.
|
13. |
Sorrell I, Shipley R J, Regan S, et al. Mathematical modelling of a liver hollow fiber bioreactor. J Theoret Biol, 2019, 475: 25-33.
|
14. |
Lorenzin A, Neri M, Lupi A, et al. Quantification of internal filtration in hollow fiber hemodialyzers with medium cut-off membrane. Blood Purificat, 2018, 46: 196-204.
|
15. |
Macias N, Vega A, Adad S, et al. Middle molecule elimination in expanded haemodialysis: only convective tranports?. Clin Kidney J, 2019, 12(3): 447-455.
|
16. |
庄黎伟. 中空纤维膜组件中流动均布模型与模拟. 上海: 华东理工大学, 2016.
|
17. |
Ding W, He L, Zhao G, et al. Effect of distribution tabs on mass transfer of artificial kidney. AIChE Journal, 2004, 50(4): 786-790.
|
18. |
Ding W, Li W, Sun S, et al. Three-dimensional simulation of mass transfer in artificial kidneys. Artif Organs, 2015, 39(6): E79-E89.
|
19. |
Sangeetha M S, Kandaswamy A, Deepika C L, et al. Finite element analysis for comparing the performance of straight and undulated fibers in altering the filtering efficiency of hemodialyzer membranes. J Mech Med Biol, 2019, 19(5): 1850063.
|
20. |
Menshutina N V, Guseva E V, Safarov R R, et al. Modelling of hollow fiber membrane bioreactor for mammalian cell cultivation using computational hydrodynamics. Bioproc Biosyst Eng, 2020, 43: 549-567.
|
21. |
Ding W P, He L Q, Gang Z, et al. Double porous media model for mass transfer of hemodialyzers. Int J Heat Mass Transfer, 2004, 47: 4849-4855.
|
22. |
Lu J, Lu W Q. A numerical simulation for mass transfer through the porous membrane of parallel straight channels. Int J Heat Mass Tran, 2010, 53(11-12): 2404-2413.
|
23. |
Kedem O, Katchalsky A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes 1958. Biochim Biophys Acta, 1989, 1000: 413-430.
|
24. |
Anderson J L. Configurational effect on the reflection coefficient for rigid solutes in capillary pores. J Theoret Biol, 1981, 90(3): 405-426.
|
25. |
Anderson J L, Malone D M. Mechanism of osmotic flow in porous membranes. Biophys J, 1974, 14(12): 957-982.
|
26. |
Yamamoto K I, Hayama M, Matsuda M, et al. Evaluation of asymmetrical structure dialysis membrane by tortuous capillary pore diffusion model. J Membrane Sci, 2007, 287(1): 88-93.
|
27. |
Preston B N, Comper W D, Hughes A E, et al. Diffusion of dextran at intermediate concentrations. J Chem Soc Faraday Trans, 1982, 78(4): 1209-1221.
|
28. |
Ding W, Zou L, Sun S, et al. A new method to increase the adsorption of protein-bound toxins in artificial liver support systems. Artif Organs, 2015, 38(11): 954-962.
|
29. |
Magalhaes H L F, Gomez R S, Leite B E, et al. Investigating the dialysis treatment using hollow fiber membrane: A new approach by CFD. Membranes, 2022, 12(7): 710.
|
30. |
Yaqoob T, Ahsan M, Hussain A, et al. Computational fluid dynamics (CFD) modeling and simulation of flow regulatory mechanism in artificial kidney using finite element method. Membranes, 2020, 10(7): 139.
|