1. |
Sung H, Ferlay J, Siegel R L, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249..
|
2. |
Vuong D, Simpson P T, Green B, et al. Molecular classification of breast cancer. Virchows Archiv, 2014, 465: 1-14..
|
3. |
Gruber I V, Rueckert M, Kagan K O, et al. Measurement of tumour size with mammography, sonography and magnetic resonance imaging as compared to histological tumour size in primary breast cancer. BMC Cancer, 2013, 13(1): 1-8..
|
4. |
Assi H A, Khoury K E, Dbouk H, et al. Epidemiology and prognosis of breast cancer in young women. J Thorac Dis, 2013, 5(Suppl 1): S2-S8..
|
5. |
Tan P H, Ellis I, Allison K, et al. The 2019 WHO classification of tumours of the breast. Histopathology, 2020, 77(2): 181-185..
|
6. |
Rakha E A, Pareja F G. New advances in molecular breast cancer pathology. Semin Cancer Biol, 2021, 72: 102-113..
|
7. |
Baxi V, Edwards R, Montalto M, et al. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod Pathol, 2022, 35(1): 23-32..
|
8. |
Srinidhi C L, Ciga O, Martel A L. Deep neural network models for computational histopathology: A survey. Med Image Anal, 2021, 67: 101813..
|
9. |
Krithiga R, Geetha P. Breast cancer detection, segmentation and classification on histopathology images analysis: a systematic review. Arch Computat Methods Eng, 2021, 28: 2607-2619..
|
10. |
Rashmi R, Prasad K, Udupa C B K. Breast histopathological image analysis using image processing techniques for diagnostic purposes: A methodological review. J Med Syst, 2022, 46: 1-24..
|
11. |
Li J, Mi W, Guo Y, et al. Artificial intelligence for histological subtype classification of breast cancer: combining multi‐scale feature maps and the recurrent attention model. Histopathology, 2022, 80(5): 836-846..
|
12. |
Jiang H, Diao Z, Shi T, et al. A review of deep learning-based multiple-lesion recognition from medical images: classification, detection and segmentation. Comput Biol Med, 2023: 106726..
|
13. |
Zhang J, Qiu S, Li Q, et al. Hepatocellular carcinoma histopathological images grading with a novel attention-sharing hybrid network based on multi-feature fusion. Biomed Signal Process Control, 2023, 86: 105126..
|
14. |
Sheikh T S, Lee Y, Cho M. Histopathological classification of breast cancer images using a multi-scale input and multi-feature network. Cancers, 2020, 12(8): 2031..
|
15. |
Amin M S, Ahn H. FabNet: A features agglomeration-based convolutional neural network for multiscale breast cancer histopathology images classification. Cancers, 2023, 15(4): 1013..
|
16. |
Alqahtani Y, Mandawkar U, Sharma A, et al. Breast cancer pathological image classification based on the multiscale CNN squeeze model. Comput Intell Neurosci, 2022, 2022: 7075408..
|
17. |
Xu C, Yi K, Jiang N, et al. MDFF-Net: A multi-dimensional feature fusion network for breast histopathology image classification. Comput Biol Med, 2023, 165: 107385..
|
18. |
Li W, Long H, Zhan X, et al. MDAA: multi-scale and dual-adaptive attention network for breast cancer classification. Signal Image Video P, 2024, 18(4): 3133-3143..
|
19. |
Karthik R, Menaka R, Siddharth M V. Classification of breast cancer from histopathology images using an ensemble of deep multiscale networks. Biocybern Biomed Eng, 2022, 42(3): 963-976..
|
20. |
Wang L, Liu J, Jiang P, et al. LGViT: Local-global vision transformer for breast cancer histopathological image classification// IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Shenzhen: IEEE, 2023: 1-5..
|
21. |
Sreelekshmi V, Pavithran K, Nair J J. SwinCNN: An Integrated Swin Trasformer and CNN for improved breast cancer grade classification. IEEE Access 2024, 12: 68697-68710..
|
22. |
韩继能, 谢嘉伟, 顾松, 等. 基于全景病理图像细胞密度和异型特征的胶质瘤自动分级. 生物医学工程学杂志, 2021, 38(6): 1062-1071..
|
23. |
Shihabuddin A R, Beevi S. Multi CNN based automatic detection of mitotic nuclei in breast histopathological images. Comput Biol Med, 2023, 158: 106815..
|
24. |
Mathew T, Ajith B, Kini J R, et al. Deep learning-based automated mitosis detection in histopathology images for breast cancer grading. Int J Imag Syst Tech, 2022, 32(4): 1192-1208..
|
25. |
Sohail A, Khan A, Wahab N, et al. A multi-phase deep CNN based mitosis detection framework for breast cancer histopathological images. Sci Rep, 2021, 11(1): 6215..
|
26. |
Mahmood T, Arsalan M, Owais M, et al. Artificial intelligence-based mitosis detection in breast cancer histopathology images using faster R-CNN and deep CNNs. J Clin Med, 2020, 9(3): 749..
|
27. |
Sigirci I O, Albayrak A, Bilgin G. Detection of mitotic cells in breast cancer histopathological images using deep versus handcrafted features. Multimed Tools Appl, 2022, 81(10): 13179-13202..
|
28. |
刘月平. 乳腺癌组织病理诊断的几个热点问题. 临床与实验病理学杂志, 2023, 39(8): 897-900..
|
29. |
Ibrahim A, Gamble P, Jaroensri R, et al. Artificial intelligence in digital breast pathology: techniques and applications. Breast, 2020, 49: 267-273..
|
30. |
Umer M J, Sharif M, Kadry S, et al. Multi-class classification of breast cancer using 6B-Net with deep feature fusion and selection method. J Pers Med, 2022, 12(5): 683..
|
31. |
He Z, Lin M, Xu Z, et al. Deconv-transformer (DecT): A histopathological image classification model for breast cancer based on color deconvolution and transformer architecture. Inform Sci, 2022, 608: 1093-1112..
|
32. |
Jiang L, Zhang C, Zhang H, et al. A lightweight spatially-aware classification model for breast cancer pathology images. Biocybern Biomed Eng, 2024, 44(3): 586-608..
|
33. |
Mi W, Li J, Guo Y, et al. Deep learning-based multi-class classification of breast digital pathology images. Cancer Manag Res, 2021: 4605-4617..
|
34. |
Huang S K, Yu Y T, Huang C R, et al. Cross-scale fusion transformer for histopathological image classification. IEEE J Biomed Health Inform, 2023, 28(1): 297-308..
|
35. |
Kausar T, Wang M J, Idrees M, et al. HWDCNN: Multi-class recognition in breast histopathology with Haar wavelet decomposed image based convolution neural network. Biocybern Biomed Eng, 2019, 39(4): 967-982..
|
36. |
Luo N, Zhong X, Su L, et al. Artificial intelligence-assisted dermatology diagnosis: From unimodal to multimodal. Comput Biol Med, 2023: 107413..
|
37. |
Roy V. Breast cancer classification with multi-fusion technique and correlation analysis. Fusion Prac Appl, 2022, 9(2): 48-61..
|
38. |
Mobadersany P, Yousefi S, Amgad M, et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci, 2018, 115(13): E2970-E2979..
|
39. |
Yao J, Zhu X, Zhu F, et al. Deep correlational learning for survival prediction from multi-modality data// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2017: 406-414..
|
40. |
Liu T, Huang J, Liao T, et al. A hybrid deep learning model for predicting molecular subtypes of human breast cancer using multimodal data. IRBM, 2022, 43(1): 62-74..
|
41. |
Yan R, Zhang F, Rao X, et al. Richer fusion network for breast cancer classification based on multimodal data. BMC Med Inform Decis Mak, 2021, 21(1): 1-15..
|
42. |
Yang J, Ju J, Guo L, et al. Prediction of HER2-positive breast cancer recurrence and metastasis risk from histopathological images and clinical information via multimodal deep learning. Comput Struct Biotechnol J, 2022, 20: 333-342..
|
43. |
Younis Y S, Ali A H, Alhafidhb O K S, et al. Early diagnosis of breast cancer using image processing techniques. J Nanomater, 2022, 2022: 1-6..
|
44. |
Nasser M, Yusof U K. Deep learning based methods for breast cancer diagnosis: A systematic review and future direction. Diagnostics, 2023, 13(1): 161..
|
45. |
Abdelsamea M M, Zidan U, Senousy Z, et al. A survey on artificial intelligence in histopathology image analysis. WIREs Data Mining Knowl Discov, 2022, 12(6): e1474..
|
46. |
陈英, 林洪平, 张伟, 等. 医学图像数据集扩充方法研究进展. 生物医学工程学杂志, 2023, 40(1): 185-192..
|
47. |
Ma Y, Huang Y, Yuan K, et al. Explainable stuttering recognition using axial attention// International Conference on Intelligent Computing. Singapore: Springer Nature Singapore, 2023: 209-220..
|
48. |
James G, Witten D, Hastie T, et al. Unsupervised learning// An introduction to statistical learning: with applications in Python. Cham: Springer International Publishing, 2023: 503-556..
|
49. |
Stahlschmidt S R, Ulfenborg B, Synnergren J. Multimodal deep learning for biomedical data fusion: a review. Brief Bioinform, 2022, 23(2): bbab569..
|
50. |
Kokol P, Kokol M, Zagoranski S. Machine learning on small size samples: A synthetic knowledge synthesis. Sci Prog, 2022, 105(1): 00368504211029777..
|
51. |
Fang F, Yao Y, Zhou T, et al. Self-supervised multi-modal hybrid fusion network for brain tumor segmentation. IEEE J Biomed Health Inform, 2021, 26(11): 5310-5320..
|