1. |
Hao G, Wang X, Chen Z, et al. Prevalence of heart failure and left ventricular dysfunction in China: the China Hypertension Survey, 2012-2015. Eur J Heart Fail, 2019, 21(11): 1329-1337.
|
2. |
Bonnemain J, Del Nido P J, Roche E T. Direct cardiac compression devices to augment heart biomechanics and function. Annu Rev Biomed Eng, 2022, 24: 137-156.
|
3. |
刘晓翰, 黄刚, 游月婷, 等. 心肌收缩力调节器治疗心力衰竭的机制及临床研究进展. 心血管病学进展, 2023, 44(9): 790-795.
|
4. |
黄刚, 邓晓奇, 张小刚, 等. 2020德国永久性心脏辅助装置植入者紧急医疗处置共识. 心血管病学进展, 2020, 41(12): 1353-1358.
|
5. |
Foster G. Third-generation ventricular assist devices. Mechanical Circulatory and Respiratory Support, 2018: 151-186.
|
6. |
黄刚, 游月婷, 刘晓翰, 等. ESC-HFA非专科医务人员管理左心室辅助装置植入者的共识(三). 心血管病学进展, 2022, 43(3): 262-264.
|
7. |
廖晓倩, 周晓辉. 非血液接触式心室辅助装置的现状及展望. 中国医疗设备, 2018, 33(11): 113-117.
|
8. |
Williams M R, Artrip J H. Direct cardiac compression for cardiogenic shock with the CardioSupport system. Ann Thorac Surg, 2001, 71(3, Suppl): S188-S189.
|
9. |
Bartlett R L, Stewart N J, Raymond J, et al. Comparative study of three methods of resuscitation: closed-chest, open-chest manual, and direct mechanical ventricular assistance. Ann Emerg Med, 1984, 13(9 Pt 2): 773-777.
|
10. |
Aranda-Michel E, Waldman L K, Trumble D R. Left ventricular simulation of cardiac compression: Hemodynamics and regional mechanics. PLoS One, 2019, 14(10): e0224475.
|
11. |
Soohoo E, Waldman L K, Trumble D R. Computational parametric studies investigating the global hemodynamic effects of applied apical torsion for cardiac assist. Ann Biomed Eng, 2017, 45(6): 1434-1448.
|
12. |
Wise D, Davies G, Coats T, et al. Emergency thoracotomy: "how to do it". Emerg Med J, 2005, 22(1): 22-24.
|
13. |
Radau P, Lu Y, Connelly K, et al. Evaluation framework for algorithms segmenting short axis cardiac MRI. The MIDAS Journal-MICCAI 2009 Workshop: Cardiac MR Left Ventricle Segmentation Challenge, 2009.
|
14. |
Guan D, Mei Y, Xu L, et al. Effects of dispersed fibres in myocardial mechanics, Part I: passive response. Math Biosci Eng, 2022, 19(4): 3972-3993.
|
15. |
Streeter D D, Spotnitz H M, Patel D P, et al. Fiber orientation in the canine left ventricle during diastole and systole. Circ Res, 1969, 24(3): 339-347.
|
16. |
Ahmad F, Soe S, White N, et al. Region-Specific Microstructure in the Neonatal Ventricles of a Porcine Model. Ann Biomed Eng, 2018, 46(12): 2162-2176.
|
17. |
Sommer G, Schriefl A J, Andrä M, et al. Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomater, 2015, 24: 172-192.
|
18. |
Li K, Ogden R W, Holzapfel G A. A discrete fibre dispersion method for excluding fibres under compression in the modelling of fibrous tissues. J R Soc Interface, 2018, 15(138): 20170766.
|
19. |
Holzapfel G, Ogden R W. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans A Math Phys Eng Sci, 2009, 367(1902): 3445-3475.
|
20. |
Guan D, Yao J, Luo X, et al. Effect of myofibre architecture on ventricular pump function by using a neonatal porcine heart model: from DT-MRI to rule-based methods. R Soc Open Sci, 2020, 7(4): 191655.
|
21. |
Guccione J M, McCulloch A D. Mechanics of active contraction in cardiac muscle: Part I--constitutive relations for fiber stress that describe deactivation. J Biomech Eng, 1993, 115(1): 72-81.
|
22. |
Mangion K, Gao H, McComb C, et al. A novel method for estimating myocardial strain: assessment of deformation tracking against reference magnetic resonance methods in healthy volunteers. Sci Rep, 2016, 6: 38774.
|
23. |
杨艳, 吴效明, 陈丽琳. 左心循环系统的建模与仿真. 中国医学物理学杂志, 2005, 22(6): 730-732,716.
|
24. |
Guan D, Liang F, Gremaud P A. Comparison of the windkessel model and structured-tree model applied to prescribe outflow boundary conditions for a one-dimensional arterial tree model. J Biomech, 2016, 49(9): 1583-1592.
|
25. |
Moriwaki K, Fujimoto N, Omori T, et al. Comparison of haemodynamic response to muscle reflex in heart failure with reduced vs. preserved ejection fraction. ESC Heart Fail, 2021, 8(6): 4882-4892.
|
26. |
Obiajulu S C, Roche E, Pigula F, et al. Soft pneumatic artificial muscles with low threshold pressures for a cardiac compression device// Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Portland: ASME, 2013: V06AT07A009.
|
27. |
Aranda-Michel E, Waldman L K, Trumble D R. Exploring the timing and distribution effects of direct cardiac compression in a beating heart model. Shanghai Chest, 2022, 6. DOI: 10.21037/shc-21-24.
|
28. |
Kuijer J P, Marcus J T, Götte M J, et al. Three-dimensional myocardial strains at end-systole and during diastole in the left ventricle of normal humans. J Cardiovasc Magn Reson, 2002, 4(3): 341-351.
|
29. |
Badano L P, Muraru D. Twist mechanics of the left ventricle. Circ Cardiovasc Imaging, 2019, 12(4): e009085.
|