1. |
邢盼盼, 马宇锋, 李彧. 颞下颌关节紊乱病的MRI图像特点及与临床症状相关性研究进展. 山东医药, 2019, 59(8): 107-110.
|
2. |
郭宇峰. CBCT三维成像技术在口腔医学领域中应用探究. 中国医疗器械信息, 2023, 29(16): 136-138.
|
3. |
傅开元, 胡敏, 余强, 等. 颞下颌关节紊乱病锥形束CT检查规范及诊断标准的专家共识. 中华口腔医学杂志, 2020, 55(9): 613-616.
|
4. |
杨晓丰, 赵阳, 刘奕. 颞下颌关节紊乱病的医学影像学诊断方法. 中国实用口腔科杂志, 2023, 16(2): 152-155.
|
5. |
Jang T J, Kim K C, Cho H C, et al. A fully automated method for 3D individual tooth identification and segmentation in dental CBCT. IEEE Trans Pattern Anal Mach Intell, 2022, 44(10): 6562-6568.
|
6. |
Yang Y, Xie R, Jia W, et al. Accurate and automatic tooth image segmentation model with deep convolutional neural networks and level set method. Neurocomputing, 2021, 419: 108-125.
|
7. |
Liu Y, Xin R, Yang T, et al. Inferior alveolar nerve segmentation in CBCT images using connectivity-based selective re-training. arXiv preprint, 2023, arXiv: 2308.09298.
|
8. |
Liu Z, Yang D, Zhang M, et al. Inferior Alveolar nerve canal segmentation on CBCT using U-Net with frequency attentions. Bioengineering, 2024, 11(4): 354.
|
9. |
Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell, 2018, 40(4): 834-848.
|
10. |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation// Medical Image Computing and Computer-Assisted Intervention 2015 (MICCAI 2015): 18th International Conference, Munich: MICCAI, 2015: 234-241.
|
11. |
Çiçek Ö, Abdulkadir A, Lienkamp S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation// Medical Image Computing and Computer-Assisted Intervention 2016 (MICCAI 2016): 19th International Conference, Athens: MICCAI, 2016: 424-432.
|
12. |
Schlemper J, Oktay O, Schaap M, et al. Attention gated networks: learning to leverage salient regions in medical images. Medical Image Analysis, 2019, 53: 197-207.
|
13. |
Chen J, Lu Y, Yu Q, et al. TransUNet: Transformers make strong encoders for medical image segmentation. arXiv preprint, 2021, arXiv: 2102.04306.
|
14. |
Cao H, Wang Y, Chen J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation//European Conference on Computer Vision, Tel Aviv: European Computer Vision Association, 2022: 205-218.
|
15. |
Liu Z, Lin Y, Cao Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows//Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal: IEEE/CVF, 2021: 10012-10022.
|
16. |
Hospedales T, Antoniou A, Micaelli P, et al. Meta-learning in neural networks: A survey. IEEE Trans Pattern Anal Mach Intell, 2022, 44(9): 5149-5169.
|
17. |
Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets//Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal: NIPS, 2014, 2: 2672–2680.
|
18. |
Zhang C, Lin G, Liu F, et al. CANet: class-agnostic segmentation networks with iterative refinement and attentive few-shot learning//IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach: IEEE/CVF, 2019: 5217-5226.
|
19. |
Dong N, Xing E P. Few-shot semantic segmentation with prototype learning//British Machine Vision Conference 2018, Newcastle: British Machine Vision Association, 2018: 4.
|
20. |
Lai X, Tian Z, Jiang L, et al. Semi-supervised semantic segmentation with directional context-aware consistency// IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville: IEEE/CVF, 2021: 1205-1214.
|
21. |
Ouyang C, Biffi C, Chen C, et al. Self-supervision with superpixels: training few-shot medical image segmentation without annotation//Computer Vision–ECCV 2020: 16th European Conference, Glasgow: European Computer Vision Association, 2020: 762-780.
|
22. |
白人驹, 徐克. 医学影像学. 第七版. 北京: 人民卫生出版社, 2013: 1-408.
|
23. |
Laine S, Aila T. Temporal ensembling for semi-supervised learning. arXiv preprint, 2016, arXiv: 1610.02242.
|
24. |
Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. UNet++: a nested U-Net architecture for medical image segmentation. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018), 2018, 11045: 3-11.
|
25. |
Lee Y H, Hong I K, An J S. Anterior joint space narrowing in patients with temporomandibular disorder. J Orofac Orthop, 2019, 80(3): 116-127.
|