1. |
Johnson K A, Okun M S, Scangos K W, et al. Deep brain stimulation for refractory major depressive disorder: a comprehensive review. Mol Psychiatry, 2024, 29(4): 1075-1087.
|
2. |
Braun J A, Patel M, Henderson L A, et al. Electrical stimulation of the ventromedial prefrontal cortex modulates muscle sympathetic nerve activity and blood pressure. Cereb Cortex, 2024, 34(1): bhad422.
|
3. |
Chmiel J, Rybakowski F, Leszek J. Effect of transcranial direct current stimulation (tDCS) on depression in Parkinson's disease-a narrative review. J Clin Med, 2024, 13(3): 699.
|
4. |
Yang S, Yi Y G, Chang M C. The effect of transcranial alternating current stimulation on functional recovery in patients with stroke: a narrative review. Front Neurol, 2024, 14: 1327383.
|
5. |
Bikson M, Grossman P, Thomas C, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul, 2016, 9(5): 641-661.
|
6. |
Peterchev A V, Wagner T A, Miranda P C, et al. Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimul, 2012, 5(4): 435-453.
|
7. |
Nitsche M A, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol, 2000, 527(Pt 3): 633-639.
|
8. |
Monte-Silva K, Kuo M F, Hessenthaler S, et al. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul, 2013, 6(3): 424-432.
|
9. |
Reinhart R M, Cosman J D, Fukuda K, et al. Using transcranial direct-current stimulation (tDCS) to understand cognitive processing. Atten Percept Psychophys, 2017, 79(1): 3-23.
|
10. |
Vergallito A, Feroldi S, Pisoni A, et al. Inter-individual variability in tDCS effects: a narrative review on the contribution of stable, variable, and contextual factors. Brain Sci, 2022, 12(5): 522.
|
11. |
Grossman P, Woods A J, Knotkova H, et al. Safety of transcranial direct current stimulation //Knotkova H, Nitsche M A, Bikson M, et al. Practical Guide to Transcranial Direct Current Stimulation: Principles, Procedures and Applications. Cham; Springer International Publishing. 2019: 167-195.
|
12. |
Davis S E, Smith G A. Transcranial direct current stimulation use in warfighting: benefits, risks, and future prospects. Front Hum Neurosci, 2019, 13: 114.
|
13. |
Buchanan D M, Bogdanowicz T, Khanna N, et al. Systematic review on the safety and tolerability of transcranial direct current stimulation in children and adolescents. Brain Sci, 2021, 11(2): 212.
|
14. |
Day P, Twiddy J, Dubljević V. Present and emerging ethical issues with tDCS use: a summary and review. Neuroethics, 2023, 16: 1.
|
15. |
Evans C, Johnstone A, Zich C, et al. The impact of brain lesions on tDCS-induced electric fields. Sci Rep, 2023, 13(1): 19430.
|
16. |
Jackson M P, Rahman A, Lafon B, et al. Animal models of transcranial direct current stimulation: methods and mechanisms. Clin Neurophysiol, 2016, 127(11): 3425-3454.
|
17. |
Qi X R, Verwer R W H, Bao A M, et al. Human brain slice culture: a useful tool to study brain disorders and potential therapeutic compounds. Neurosci Bull, 2019, 35(2): 244-252.
|
18. |
YalC'in Y D, Luttge R. Electrical monitoring approaches in 3-dimensional cell culture systems: toward label-free, high spatiotemporal resolution, and high-content data collection in vitro. Organs Chip, 2021, 3: 100006.
|
19. |
Oblasov I, Idzhilova O, Balaban P, et al. Cell culture models for epilepsy research and treatment. Explor Med, 2024, 5: 65-75.
|
20. |
Cho S, Wood A, Bowlby M R. Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr Neuropharmacol, 2007, 5(1): 19-33.
|
21. |
Esmaeilpour Z, Marangolo P, Hampstead B M, et al. Incomplete evidence that increasing current intensity of tDCS boosts outcomes. Brain Stimul, 2018, 11(2): 310-321.
|
22. |
Saypol J M, Roth B J, Cohen L G, et al. A theoretical comparison of electric and magnetic stimulation of the brain. Ann Biomed Eng, 1991, 19(3): 317-328.
|
23. |
Cerri G, De Leo R, Moglie F, et al. An accurate 3-D model for magnetic stimulation of the brain cortex. J Med Eng Technol, 1995, 19(1): 7-16.
|
24. |
钟刚亮, 张广浩, 任艳萍, 等. 真实头模型中改良电休克与磁休克治疗的电场仿真分析. 生物医学工程学杂志, 2018, 35(4): 564-570, 577.
|
25. |
Nadeem M, Thorlin T, Gandhi O P, et al. Computation of electric and magnetic stimulation in human head using the 3-D impedance method. IEEE Trans Biomed Eng, 2003, 50(7): 900-907.
|
26. |
郑建斌, 霍小林. 经颅磁刺激中大鼠真实头模型感应电场分布的研究. 北京生物医学工程, 2006, 25(5): 490-492.
|
27. |
杜百川. 基于真实小鼠头模型的经颅磁刺激线圈仿真分析与设计. 天津: 河北工业大学, 2022.
|
28. |
周乾. 基于DTI的大鼠默认网络神经纤维构建及实验验证. 北京: 中国科学院大学, 2023.
|
29. |
Ward L C, Brantlov S. Bioimpedance basics and phase angle fundamentals. Rev Endocr Metab Disord, 2023, 24(3): 381-391.
|
30. |
Datta A, Dmochowski J P, Guleyupoglu B, et al. Cranial electrotherapy stimulation and transcranial pulsed current stimulation: a computer based high-resolution modeling study. Neuroimage, 2013, 65: 280-287.
|
31. |
Cutsuridis V, Cobb S, Graham B P. Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus, 2010, 20(3): 423-446.
|
32. |
Goubran M, Leuze C, Hsueh B, et al. Multimodal image registration and connectivity analysis for integration of connectomic data from microscopy to MRI. Nat Commun, 2019, 10(1): 5504.
|