1. |
Luites J W H, Brinkman J M, Wymenga A B, et al. Fixation stability of opening- versus closing-wedge high tibial osteotomy: a randomised clinical trial using radiostereometry. Bone Joint Surg Br, 2009, 91(11): 1459-1465.
|
2. |
Demeo P J, Johnson E M, Chiang P P, et al. Midterm follow-up of opening-wedge high tibial osteotomy. Am J Sports Med, 2010, 38(20): 77-84.
|
3. |
Park C H, Bae D K, Kim K I, et al. Serial changes in the joint space width and joint line convergence angle after closed-wedge high tibial osteotomy. Am J Sports Med, 2017, 45(32): 54-61.
|
4. |
Cheng X, Liu F, Xiong F, et al. Radiographic changes and clinical outcomes after open and closed wedge high tibial osteotomy: a systematic review and meta-analysis. J Orthop Surg Res, 2019, 14(1): 179.
|
5. |
Rupp M C, Lindner F, Winkler P W, et al. Clinical effect of isolated lateral closing wedge distal femoral osteotomy compared to medial opening wedge high tibial osteotomy for the correction of varus malalignment: a propensity score-matched analysis. Am J Sports Med, 2023, 51(2): 437-445.
|
6. |
Takeuchi R, Bito H, Akamatsu Y, et al. In vitro stability of open wedge high tibial osteotomy with synthetic bone graft. Knee, 2010, 17(3): 217-220.
|
7. |
Pauchard Y, Ivanov T G, McErlain D D, et al. Assessing the local mechanical environment in medial opening wedge high tibial osteotomy using finite element analysis. J Biomech Eng, 2015, 137(3): 1-7.
|
8. |
Kaze A D, Maas S, Belsey J, et al. Static and fatigue strength of a novel anatomically contoured implant compared to five current open-wedge high tibial osteotomy plates. J Exp Orthop, 2017, 4(1): 39.
|
9. |
Koh Y G, Lee J A, Lee H Y, et al. Design optimization of high tibial osteotomy plates using finite element analysis for improved biomechanical effect. J Orthop Surg Res., 2019, 14(1): 219.
|
10. |
Pape D, Kohn D, Giffen V, et al. Differences in fixation stability between spacer plate and plate fixator following high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc, 2013, 21(1): 82-89.
|
11. |
Jeong H W, Shim S J, Park S Y, et al. Analysis of the determinant factor of the medial joint space width after medial opening wedge high tibial osteotomy. Arch Orthop Trauma Surg, 2023, 143(8): 4879-4888.
|
12. |
Golovakhа M L, Orljanski W, Benedetto K-P, et al. Comparison of theoretical fixation stability of three devices employed in medial opening wedge high tibial osteotomy: a finite element analysis. BMC Musculoskelet Disord, 2014, 15: 230.
|
13. |
Jang Y W, Lim D, Seo H, et al. Role of an anatomically contoured plate and metal block for balanced stability between the implant and lateral hinge in open-wedge high-tibial osteotomy. Arch Orthop Trauma Surg, 2018, 138(7): 911-920.
|
14. |
Ha J K, Yeom C H, Jang H S, et al. Biomechanical analysis of a novel wedge locking plate in a porcine tibial model. Clin Orthop Surg, 2016, 8(4): 373-378.
|
15. |
Belsey J, Diffo Kaze A, Jobson S, et al. Graft materials provide greater static strength to medial opening wedge high tibial osteotomy than when no graft is included. J Exp Orthop, 2019, 6(1): 13.
|
16. |
Costantino P D, Friedman C D. Synthetic bone graft substitutes. Otolaryngol Clin North Am, 1994, 27(5): 1037-1074.
|
17. |
Jeon J W, Jang S, Ro D H, et al. Faster bone union progression and less sclerosis at the osteotomy margin after medial opening-wedge high tibial osteotomy using highly porous beta-tricalcium phosphate granules versus allogeneic bone chips: A matched case-control study. Knee, 2021, 29: 33-41.
|
18. |
Lee S S, So S Y, Jung E Y, et al. The efficacy of porous hydroxyapatite chips as gap filling in open-wedge high tibial osteotomy in terms of clinical, radiological, and histological criteria. Knee, 2020, 27(2): 436-443.
|
19. |
Peng L, Bai J, Zeng X, et al. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med Eng Phys, 2006, 28(3): 227-233.
|
20. |
Sopher R S, Amis A A, Calder J D, et al. Total ankle replacement design and positioning affect implant-bone micromotion and bone strains. Med Eng Phys, 2017, 42: 80-90.
|
21. |
Luo C A, Hua S Y, Lin S C, et al. Stress and stability comparison between different systems for high tibial osteotomies. BMC Musculoskelet Disord, 2013, 14: 110.
|
22. |
Luo D, Rong Q, Chen Q, et al. Finite-element design and optimization of a three-dimensional tetrahedral porous titanium scaffold for the reconstruction of mandibular defects. Med Eng Phys, 2017, 47: 176.
|
23. |
Chen Y N, Chang C W, Li C T, et al. Biomechanical investigation of the type and configuration of screws used in high tibial osteotomy with titanium locking plate and screw fixation. J Orthop Surg Res, 2019, 14(1): 35.
|
24. |
Raja Izaham R M, Abdul Kadir M R, Abdul Rashid A H, et al. Finite element analysis of Puddu and Tomofix plate fixation for open wedge high tibial osteotomy. Injury, 2012, 43(6): 898-902.
|
25. |
Koh Y G, Son J, Kwon S K, et al. Biomechanical evaluation of opening-wedge high tibial osteotomy with composite materials using finite-element analysis. Knee, 2018, 25(6): 977-987.
|
26. |
Han Q, Wang C, Chen H, et al. Porous tantalum and titanium in orthopedics: A review. ACS Biomater Sci Eng, 2019, 5(11): 5798-5824.
|
27. |
Tanaka T. Opening wedge high tibial osteotomy using a puddu plate and β-Tricalcium phosphate blocks. Tech Orthop, 2013, 28(2): 74831354.
|
28. |
Pan C S, Wang X, Ding L Z, et al. The best position of bone grafts in the medial open-wedge high tibial osteotomy: A finite element analysis. Comput Methods Programs Biomed, 2023, 228: 107253.
|