1. |
Solis-Escalante T, De Kam D, Weerdesteyn V. Classification of rhythmic cortical activity elicited by whole-body balance perturbations suggests the cortical representation of direction-specific changes in postural stability. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(11): 2566-2574.
|
2. |
Xu R, Ming D, Ding Z, et al. Extra excitation of biceps femoris during neuromuscular electrical stimulation reduces knee medial loading. Royal Society Open Science, 2019, 6(3): 181545.
|
3. |
Grosset J F, Canon F, Pérot C, et al. Changes in contractile and elastic properties of the triceps surae muscle induced by neuromuscular electrical stimulation training. European Journal of Applied Physiology, 2014, 114: 1403-1411.
|
4. |
裴子文, 耿治中, 言功立, 等. 神经肌肉电刺激同步功能训练治疗功能性踝关节不稳疗效观察. 康复学报, 2019, 29(6): 49-54.
|
5. |
李素姣, 刘苏, 蓝贺, 等. 脑肌电信号同步耦合分析方法研究进展. 生物医学工程学杂志, 2019, 36(2): 334-337,342.
|
6. |
Spedden M E, Nielsen J B, Geertsen S S. Oscillatory corticospinal activity during static contraction of ankle muscles is reduced in healthy old versus young adults. Neural plasticity, 2018, 2018: 3432649.
|
7. |
Bao S C, Leung K W, Tong K Y. Cortico-muscular interaction to monitor the effects of neuromuscular electrical stimulation pedaling training in chronic stroke. Computers in Biology and Medicine, 2021, 137: 104801.
|
8. |
Qiu S, Yi W, Xu J, et al. Event-related beta EEG changes during active, passive movement and functional electrical stimulation of the lower limb. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24(2): 283-290.
|
9. |
Li F, Peng W, Jiang Y, et al. The dynamic brain networks of motor imagery: time-varying causality analysis of scalp EEG. International Journal of Neural Systems, 2019, 29(1): 1850016.
|
10. |
Murnaghan C D, Squair J W, Chua R, et al. Cortical contributions to control of posture during unrestricted and restricted stance. Journal of Neurophysiology, 2014, 111(9): 1920-1926.
|
11. |
Xi X, Ma C, Yuan C, et al. Enhanced EEG–EMG coherence analysis based on hand movements. Biomedical Signal Processing and Control, 2020, 56: 101727.
|
12. |
高云园, 任磊磊, 周旭, 等. 基于变尺度符号传递熵的多通道脑肌电信号耦合分析. 中国生物医学工程学报, 2018, 37(1): 8-16.
|
13. |
Xu R, Zhang H, Shi X, et al. Lower-limb motor assessment with corticomuscular coherence of multiple muscles during ankle dorsiflexion after stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 160-168.
|
14. |
Zhou L, Wu B, Qin B, et al. Cortico-muscular coherence of time–frequency and spatial characteristics under movement observation, movement execution, and movement imagery. Cognitive Neurodynamics, 2023: 1-18.
|
15. |
章琴, 罗志增. 视觉和本体感觉对人体静态平衡稳定性的影响. 华中科技大学学报(自然科学版), 2015, 43(S1): 396-400.
|
16. |
Reshef D N, Reshef Y A, Finucane H K, et al. Detecting novel associations in large data sets. Science, 2011, 334(6062): 158-1524.
|
17. |
Pincus S. Approximate entropy (ApEn) as a complexity measure. Chaos, 1995, 5(1): 110-117.
|
18. |
Neuper C, Pfurtscheller G. Evidence for distinct beta resonance frequencies in human EEG related to specific sensorimotor cortical areas. Clinical Neurophysiology, 2001, 112(11): 2084-2097.
|
19. |
Johnson A N, Shinohara M. Corticomuscular coherence with and without additional task in the elderly. Journal of Applied Physiology, 2012, 112(6): 970-981.
|
20. |
Jacob J E, Nair G K. EEG entropies as estimators for the diagnosis of encephalopathy. Analog Integrated Circuits and Signal Processing, 2019, 101(3): 463-474.
|
21. |
郑赟, 马玉良, 孙明旭, 等. 一种疲劳驾驶检测中的脑电信号通道选择方法. 中国生物医学工程学报, 2022, 41(4): 402-411.
|
22. |
Witham C L, Riddle C N, Baker M R, et al. Contributions of descending and ascending pathways to corticomuscular coherence in humans. The Journal of physiology, 2011, 589(15): 3789-3800.
|
23. |
Wang Y X, Luo Z Z. Research on the effect of MT+ FES training on sensorimotor cortex. Neural Plasticity, 2022, 2022: 6385755.
|
24. |
肖松林, 周俊鸿, 王宝峰, 等. 高精度经颅直流电刺激对足部肌肉力量、踝关节运动觉及静态平衡的影响. 体育科学, 2020, 40(5): 42-51.
|