1. |
Islam M R, Qaraqe M, Qaraqe K, et al. Cat-net: convolution, attention, and transformer based network for single-lead ECG arrhythmia classification. Biomedical Signal Processing and Control, 2024, 93: 106211.
|
2. |
Li X, Zhang J, Chen W, et al. Inter-patient automated arrhythmia classification: a new approach of weight capsule and sequence to sequence combination. Comput Methods Programs Biomed, 2022, 214: 106533.
|
3. |
Hao S, Xu H, Ji H, et al. G2-ResNeXt: a novel model for ECG signal classification. IEEE Access, 2023, 11: 34808-34820.
|
4. |
Singh A K, Krishnan S. ECG signal feature extraction trends in methods and applications. Biomed Eng Online, 2023, 22(1): 22.
|
5. |
Jeong D U, Lim K M. Convolutional neural network for classification of eight types of arrhythmia using 2D time-frequency feature map from standard 12-lead electrocardiogram. Sci Rep, 2021, 11(1): 20396.
|
6. |
Oliveira A T, Nobrega E G O. A novel arrhythmia classification method based on convolutional neural networks interpretation of electrocardiogram images//2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne: IEEE, 2019: 841-846.
|
7. |
Lai D, Fan X, Zhang Y, et al. Intelligent and efficient detection of life-threatening ventricular arrhythmias in short segments of surface ECG signals. IEEE Sensors Journal, 2020, 21(13): 14110-14120.
|
8. |
Ozaltin O, Yeniay O. A novel proposed CNN–SVM architecture for ECG scalograms classification. Soft Computing, 2023, 27(8): 4639-4658.
|
9. |
Mohonta S C, Motin M A, Kumar D K. Electrocardiogram based arrhythmia classification using wavelet transform with deep learning model. Sensing and Bio-Sensing Research, 2022, 37: 100502.
|
10. |
Nojavanasghari B, Gopinath D, Koushik J, et al. Deep multimodal fusion for persuasiveness prediction//Proceedings of the 18th ACM International Conference on Multimodal Interaction (ICMI), Tokyo: ACM, 2016: 284-288.
|
11. |
Ilse M, Tomczak J, Welling M. Attention-based deep multiple instance learning//Proceedings of the 35th International Conference on Machine Learning (ICML), Stockholm: PMLR, 2018: 2127-2136.
|
12. |
Zhang F, Wang J, Li M, et al. Multi-scale and multi-channel information fusion for exercise electrocardiogram feature extraction and classification. IEEE Access, 2024, 12: 36670-36679.
|
13. |
Hashimoto N, Fukushima D, Koga R, et al. Multi-scale domain-adversarial multiple-instance CNN for cancer subtype classification with unannotated histopathological images//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle: IEEE, 2020: 3852-3861.
|
14. |
Wang T, Lu C, Sun Y, et al. Automatic ECG classification using continuous wavelet transform and convolutional neural network. Entropy (Basel), 2021, 23(1): 119.
|
15. |
Liu Q, Gao C, Zhao Y, et al. ECG abnormality detection based on multi-domain combination features and LSTM//2023 4th International Conference on Computer Engineering and Application (ICCEA), Hangzhou: IEEE, 2023: 565-569.
|
16. |
Ahmad Z, Tabassum A, Guan L, et al. ECG heartbeat classification using multimodal fusion. IEEE Access, 2021, 9: 100615-100626.
|
17. |
Feng P, Fu J, Ge Z, et al. Unsupervised semantic-aware adaptive feature fusion network for arrhythmia detection. Information Sciences, 2022, 582: 509-528.
|
18. |
Waswani A, Shazeer N, Parmar N, et al. Attention is all you need//Proceedings of the 31st Neural Information Processing Systems (NIPS), Long Beach: NIPS, 2017: 5998-6008.
|
19. |
Zhou F, Sun Y, Wang Y. Inter-patient ECG arrhythmia heartbeat classification network based on multiscale convolution and FCBA. Biomedical Signal Processing and Control, 2024, 90: 105789.
|
20. |
Yi P, Si Y, Fan W, et al. ECG biometrics based on attention enhanced domain adaptive feature fusion network. IEEE Access, 2023, 12: 1291-1307.
|
21. |
袁成成, 刘自结, 王常青, 等. 融合残差网络与自注意力机制的心律失常分类. 生物医学工程学杂志, 2023, 40(3): 474-481.
|
22. |
Mondéjar-Guerra V, Novo J, Rouco J, et al. Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers. Biomedical Signal Processing and Control, 2019, 47: 41-48.
|
23. |
Zhang Z, Dong J, Luo X, et al. Heartbeat classification using disease-specific feature selection. Computers in Biology and Medicine, 2014, 46: 79-89.
|
24. |
韩闯, 阙文戈, 王治忠, 等. 基于心电图的心肌梗死智能辅助诊断方法研究综述. 生物医学工程学杂志, 2023, 40(5): 1019-1026.
|
25. |
Sraitih M, Jabrane Y, Atlas A. An overview on intra-and inter-patient paradigm for ECG heartbeat arrhythmia classification//2021 International Conference on Digital Age & Technological Advances for Sustainable Development (ICDATA), Marrakech: IEEE, 2021: 1-7.
|
26. |
de Chazal P, O'Dwyer M, Reilly R B. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Transactions on Biomedical Engineering, 2004, 51(7): 1196-1206.
|
27. |
吕杭, 蒋明峰, 李杨, 等. 基于混合时频域特征的卷积神经网络心律失常分类方法的研究. 电子学报, 2023, 51(3): 701-711.
|
28. |
Xia Y, Xu Y, Chen P, et al. Generative adversarial network with transformer generator for boosting ECG classification. Biomedical Signal Processing and Control, 2023, 80: 104276.
|
29. |
Wang T, Lu C, Yang M, et al. A hybrid method for heartbeat classification via convolutional neural networks, multilayer perceptrons and focal loss. PeerJ Computer Sci, 2020, 6: e324.
|
30. |
Wang T, Lu C, Ju W, et al. Imbalanced heartbeat classification using EasyEnsemble technique and global heartbeat information. Biomedical Signal Processing and Control, 2022, 71(PA): 103105.
|
31. |
Wang H, Shi H, Lin K, et al. A high-precision arrhythmia classification method based on dual fully connected neural network. Biomedical Signal Processing and Control, 2020, 58: 101874.
|
32. |
Liu J, Liu Y, Jin Y, et al. A novel diagnosis method combined dual-channel SE-ResNet with expert features for inter-patient heartbeat classification. Medical Engineering & Physics, 2024, 130: 104209.
|