石桂秀,
Email: ifang12130211@163.com
白细胞介素(IL)-35是IL-12家族中新的一员,由EB病毒诱导基因3产物(Ebi3)和IL-12p35亚基形成的异二聚体,它可由调节性T(Treg)细胞特异性产生,是Treg细胞介导的免疫调节作用所必需的细胞因子。增加IL-35可抑制一些自身免疫性疾病如动物模型中的CIA等,证明了它在炎性细胞因子介导的疾病中存有潜在的治疗作用。但是,很多和IL-35相关的问题仍然不清楚,比如IL-35的受体结构、介导的细胞信号通路、以及在人细胞中的表达模式。虽然IL-35与IL-12家族中的IL-12和IL-27有共同亚基,然而IL-35有着不同的生物学功能,因此拟通过对既往有关IL-12家族的许多室验结论进行再评价,以期望探索IL-35在其中所起到的作用。
Citation: 李芳,吴永强,石桂秀. 白细胞介素-35在自身免疫性疾病中的研究进展. West China Medical Journal, 2013, 28(6): 948-954. doi: 10.7507/1002-0179.20130298 Copy
1. | Stern AS, Podlaski FJ, Hulmes JD, et al. Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B-lymphoblastoid cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(17): 6808-6812. |
2. | Schoenhaut DS, Chua AO, Wolitzky AG, et al. Cloning and expression of murine IL-12[J]. J Immunol, 1992, 148(11): 3433-3440. |
3. | Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12[J]. Immunity, 2000, 13(5): 715-725. |
4. | Pflanz S, Timans JC, Cheung J, et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4(+) T cells[J]. Immunity, 2002, 16(6): 779-790. |
5. | Devergne O, Hummel M, Koeppen H, et al. A novel interleukin-12 p40-related protein induced by latent Epstein-Barr virus infection in B lymphocytes[J]. Journal of virology, 1996, 70(2): 1143-1153. |
6. | Gehlert T, Devergne O, Niedobitek G. Epstein-Barr virus (EBV) infection and expression of the interleukin-12 family member EBV-induced gene 3 (EBI3) in chronic inflammatory bowel disease[J]. Journal of medical virology, 2004, 73(3): 432-438. |
7. | Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity[J]. Nature reviews Immunology, 2003, 3(2): 133-146. |
8. | Nagai H, Oniki S, Fujiwara S, et al. Antitumor activities of interleukin-27 on melanoma[J]. Endocrine, metabolic & immune disorders drug targets, 2010, 10(1): 41-46. |
9. | Goriely S, Goldman M. The interleukin-12 family: new players in transplantation immunity[J]? American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 2007, 7(2): 278-284. |
10. | Wang KS, Frank DA, Ritz J. Interleukin-2 enhances the response of natural killer cells to interleukin-12 through up-regulation of the interleukin-12 receptor and STAT4[J]. Blood, 2000, 95(10): 3183-3190. |
11. | van de Vosse E, Lichtenauer-Kaligis EG, van Dissel JT, et al. Genetic variations in the interleukin-12/interleukin-23 receptor (beta1) chain, and implications for IL-12 and IL-23 receptor structure and function[J]. Immunogenetics, 2003, 54(12): 817-829. |
12. | Parham C, Chirica M, Timans J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R[J]. J Immunol, 2002, 168(11): 5699-5708. |
13. | Pflanz S, Hibbert L, Mattson J, et al. WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27[J]. J Immunol, 2004, 172(4): 2225-2231. |
14. | Taga T, Kishimoto T. Gp130 and the interleukin-6 family of cytokines[J]. Annual review of immunology, 1997, 15: 797-819. |
15. | Ihle JN, Witthuhn BA, Quelle FW, et al. Signaling through the hematopoietic cytokine receptors[J]. Annual review of immunology, 1995, 13: 369-398. |
16. | Heinrich PC, Behrmann I, Muller-Newen G, et al. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway[J]. The Biochemical journal, 1998, 334 ( Pt 2): 297-314. |
17. | Ning-Wei Z. Interleukin (IL)-35 is raising our expectations[J]. Revista medica de Chile, 2010, 138(6): 758-766. |
18. | Collison LW, Vignali DA. Interleukin-35: odd one out or part of the family? [J] Immunological reviews, 2008, 226: 248-262. |
19. | Takaoka A, Yanai H, Kondo S, et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors[J]. Nature, 2005, 434(7030): 243-249. |
20. | Ouyang X, Negishi H, Takeda R, et al. Cooperation between MyD88 and TRIF pathways in TLR synergy via IRF5 activation[J]. Biochemical and biophysical research communications, 2007, 354(4): 1045-1051. |
21. | Negishi H, Fujita Y, Yanai H, et al. Evidence for licensing of IFN-gamma-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(41): 15136-15141. |
22. | Goriely S, Molle C, Nguyen M, et al. Interferon regulatory factor 3 is involved in Toll-like receptor 4 (TLR4)- and TLR3-induced IL-12p35 gene activation[J]. Blood, 2006, 107(3): 1078-1084. |
23. | Liu J, Cao S, Herman LM, et al. Differential regulation of interleukin (IL)-12 p35 and p40 gene expression and interferon (IFN)-gamma-primed IL-12 production by IFN regulatory factor 1[J]. The Journal of experimental medicine, 2003, 198(8): 1265-1276. |
24. | Liu J, Guan X, Tamura T, et al. Synergistic activation of interleukin-12 p35 gene transcription by interferon regulatory factor-1 and interferon consensus sequence-binding protein[J]. The Journal of biological chemistry, 2004, 279(53): 55609-55617. |
25. | Weinmann AS, Plevy SE, Smale ST. Rapid and selective remodeling of a positioned nucleosome during the induction of IL-12 p40 transcription[J]. Immunity, 1999, 11(6): 665-675. |
26. | Goriely S, Demonte D, Nizet S, et al. Human IL-12(p35) gene activation involves selective remodeling of a single nucleosome within a region of the promoter containing critical Sp1-binding sites[J]. Blood, 2003, 101(12): 4894-4902. |
27. | Goriely S, Neurath MF, Goldman M. How microorganisms tip the balance between interleukin-12 family members[J]. Nature reviews Immunology, 2008, 8(1): 81-86. |
28. | Wirtz S, Becker C, Fantini MC, et al. EBV-induced gene 3 transcription is induced by TLR signaling in primary dendritic cells via NF-kappa B activation[J]. J Immunol, 2005, 174(5): 2814-2824. |
29. | Fantini MC, Becker C, Monteleone G, et al. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7[J]. J Immunol, 2004, 172(9): 5149-5153. |
30. | Zheng SG, Wang JH, Koss MN, et al. CD4+ and CD8+ regulatory T cells generated ex vivo with IL-2 and TGF-beta suppress a stimulatory graft-versus-host disease with a lupus-like syndrome[J]. J Immunol, 2004, 172(3): 1531-1539. |
31. | Tran DQ, Ramsey H, Shevach EM. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype[J]. Blood, 2007, 110(8): 2983-2990. |
32. | Collison LW, Workman CJ, Kuo TT, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function[J]. Nature, 2007, 450(7169): 566-569. |
33. | Zheng Y, Josefowicz SZ, Kas A, et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells[J]. Nature, 2007, 445(7130): 936-940. |
34. | Wolf SF, Temple PA, Kobayashi M, et al. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells[J]. J Immunol, 1991, 146(9): 3074-3081. |
35. | Allan SE, Song-Zhao GX, Abraham T, et al. Inducible reprogramming of human T cells into Treg cells by a conditionally active form of FOXP3[J]. European journal of immunology, 2008, 38(12): 3282-3289. |
36. | Chaturvedi V, Collison LW, Guy CS, et al. Cutting edge: Human regulatory T cells require IL-35 to mediate suppression and infectious tolerance[J]. J Immunol, 2011, 186(12): 6661-6666. |
37. | Morgan ME, Flierman R, van Duivenvoorde LM, et al. Effective treatment of collagen-induced arthritis by adoptive transfer of CD25+ regulatory T cells[J]. Arthritis and rheumatism, 2005, 52(7): 2212-2221. |
38. | Morgan ME, Sutmuller RP, Witteveen HJ, et al. CD25+ cell depletion hastens the onset of severe disease in collagen-induced arthritis[J]. Arthritis and rheumatism, 2003, 48(5): 1452-1460. |
39. | Gonzalez-Rey E, Fernandez-Martin A, Chorny A, et al. Vasoactive intestinal peptide induces CD4+,CD25+ T regulatory cells with therapeutic effect in collagen-induced arthritis[J]. Arthritis and rheumatism, 2006, 54(3): 864-876. |
40. | Niedbala W, Wei XQ, Cai B, et al. IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells[J]. European journal of immunology, 2007, 37(11): 3021-3029. |
41. | Schottelius AJ, Mayo MW, Sartor RB, et al. Interleukin-10 signaling blocks inhibitor of kappaB kinase activity and nuclear factor kappaB DNA binding[J]. The Journal of biological chemistry, 1999, 274(45): 31868-31874. |
42. | Collison LW, Pillai MR, Chaturvedi V, et al. Regulatory T cell suppression is potentiated by target T cells in a cell contact, IL-35- and IL-10-dependent manner[J]. J Immunol, 2009, 182(10): 6121-6128. |
43. | Mottet C, Uhlig HH, Powrie F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells[J]. J Immunol, 2003, 170(8): 3939-3943. |
44. | Colgan J, Rothman P. All in the family: IL-27 suppression of T(H)-17 cells[J]. Nature immunology, 2006, 7(9): 899-901. |
45. | Niedbala W, Cai B, Liu H, et al. Nitric oxide induces CD4+CD25+ Foxp3 regulatory T cells from CD4+CD25 T cells via p53, IL-2, and OX40[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(39): 15478-15483. |
46. | Lund JM, Hsing L, Pham TT, et al. Coordination of early protective immunity to viral infection by regulatory T cells[J]. Science, 2008, 320(5880): 1220-1224. |
47. | Haribhai D, Lin W, Relland LM, et al. Regulatory T cells dynamically control the primary immune response to foreign antigen[J]. J Immunol, 2007, 178(5): 2961-2972. |
48. | Kim JM, Rasmussen JP, Rudensky AY. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice[J]. Nature immunology, 2007, 8(2): 191-197. |
49. | Kassiotis G, O’Garra A. Immunology. Immunity benefits from a little suppression[J]. Science, 2008, 320(5880): 1168-1169. |
50. | Kempe S, Heinz P, Kokai E, et al. Epstein-barr virus-induced gene-3 is expressed in human atheroma plaques[J]. The American journal of pathology, 2009, 175(1): 440-447. |
51. | Hsieh CS, Liang Y, Tyznik AJ, et al. Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors[J]. Immunity, 2004, 21(2): 267-277. |
52. | Pacholczyk R, Ignatowicz H, Kraj P, et al. Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells[J]. Immunity, 2006, 25(2): 249-259. |
53. | Almeida AR, Zaragoza B, Freitas AA. Indexation as a novel mechanism of lymphocyte homeostasis: the number of CD4+CD25+ regulatory T cells is indexed to the number of IL-2-producing cells[J]. J Immunol, 2006, 177(1): 192-200. |
54. | Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells[J]. Nature, 200, 441(7090): 235-238. |
55. | Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nature immunology, 2005, 6(11): 1123-1132. |
56. | Wahl SM, Wen J, Moutsopoulos N. TGF-beta: a mobile purveyor of immune privilege[J]. Immunological reviews, 2006, 213: 213-227. |
57. | Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J]. Nature immunology, 2005, 6(11): 1133-1141. |
58. | Kolls JK, Linden A. Interleukin-17 family members and inflammation[J]. Immunity, 2004, 21(4): 467-476. |
59. | Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation[J]. The Journal of experimental medicine, 2005, 201(2): 233-240. |
60. | Ivanov, II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells[J]. Cell, 2006, 126(6): 1121-1133. |
61. | Yang J, Yang M, Htut TM, et al. Epstein-Barr virus-induced gene 3 negatively regulates IL-17, IL-22 and RORgamma t[J]. European journal of immunology, 2008, 38(5): 1204-1214. |
62. | Steinman L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system[J]. Cell, 1996, 85(3): 299-302. |
63. | Zheng Y, Rudensky AY. Foxp3 in control of the regulatory T cell lineage[J]. Nature immunology, 2007, 8(5): 457-462. |
64. | Adorini L. Interleukin-12, a key cytokine in Th1-mediated autoimmune diseases[J]. Cellular and molecular life sciences : CMLS, 1999, 55(12): 1610-1625. |
65. | Karp CL, Biron CA, Irani DN. Interferon beta in multiple sclerosis: is IL-12 suppression the key? [J]Immunology today, 2000, 21(1): 24-28. |
66. | Constantinescu CS, Wysocka M, Hilliard B, et al. Antibodies against IL-12 prevent superantigen-induced and spontaneous relapses of experimental autoimmune encephalomyelitis[J]. J Immunol, 1998, 161(9): 5097-5104. |
67. | Leonard JP, Waldburger KE, Goldman SJ. Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12[J]. The Journal of experimental medicine, 1995, 181(1): 381-386. |
68. | Costa GL, Sandora MR, Nakajima A, et al. Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit[J]. J Immunol, 2001, 167(4): 2379-2387. |
69. | Becher B, Durell BG, Noelle RJ. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12[J]. The Journal of clinical investigation, 2002, 110(4): 493-497. |
70. | Gran B, Zhang GX, Yu S, et al. IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination[J]. J Immunol, 2002, 169(12): 7104-7110. |
71. | Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain[J]. Nature, 2003, 421(6924): 744-748. |
72. | Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17[J]. The Journal of biological chemistry, 2003, 278(3): 1910-1914. |
73. | Nagai T, Devergne O, van Seventer GA, et al. Interferon-beta mediates opposing effects on interferon-gamma-dependent Interleukin-12 p70 secretion by human monocyte-derived dendritic cells[J]. Scandinavian journal of immunology, 2007, 65(2): 107-117. |
74. | Goldberg R, Zohar Y, Wildbaum G, et al. Suppression of ongoing experimental autoimmune encephalomyelitis by neutralizing the function of the p28 subunit of IL-27[J]. J Immunol, 2004, 173(10): 6465-6471. |
75. | Kohm AP, Carpentier PA, Anger HA, et al. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis[J]. J Immunol, 2002, 169(9): 4712-4716. |
76. | McHugh RS, Shevach EM. The role of suppressor T cells in regulation of immune responses[J]. The Journal of allergy and clinical immunology, 2002, 110(5): 693-702. |
77. | McGeachy MJ, Stephens LA, Anderton SM. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system[J]. J Immunol, 2005, 175(5): 3025-3032. |
78. | Neu N, Rose NR, Beisel KW, et al. Cardiac myosin induces myocarditis in genetically predisposed mice[J]. J Immunol, 1987, 139(11): 3630-3636. |
79. | Reddy J, Illes Z, Zhang X, et al. Myelin proteolipid protein-specific CD4+CD25+ regulatory cells mediate genetic resistance to experimental autoimmune encephalomyelitis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(43): 15434-15439. |
80. | Thakker P, Leach MW, Kuang W, et al. IL-23 is critical in the induction but not in the effector phase of experimental autoimmune encephalomyelitis[J]. J Immunol, 2007, 178(4): 2589-2598. |
81. | Courtenay JS, Dallman MJ, Dayan AD, et al. Immunisation against heterologous type II collagen induces arthritis in mice[J]. Nature, 1980, 283(5748): 666-668. |
82. | Lubberts E, van den Bersselaar L, Oppers-Walgreen B, et al. IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-kappa B ligand/osteoprotegerin balance[J]. J Immunol, 2003, 170(5): 2655-2662. |
83. | Rohn TA, Jennings GT, Hernandez M, et al. Vaccination against IL-17 suppresses autoimmune arthritis and encephalomyelitis[J]. European journal of immunology, 2006, 36(11): 2857-2867. |
84. | Murphy CA, Langrish CL, Chen Y, et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation[J]. The Journal of experimental medicine, 2003, 198(12): 1951-1957. |
85. | Kelchtermans H, Geboes L, Mitera T, et al. Activated CD4+CD25+ regulatory T cells inhibit osteoclastogenesis and collagen-induced arthritis[J]. Annals of the rheumatic diseases, 2009, 68(5): 744-750. |
86. | Delgado M, Toscano MG, Benabdellah K, et al. In vivo delivery of lentiviral vectors expressing vasoactive intestinal peptide complementary DNA as gene therapy for collagen-induced arthritis[J]. Arthritis and rheumatism, 2008, 58(4): 1026-1037. |
87. | Seki M, Oomizu S, Sakata KM, et al. Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis[J]. Clin Immunol, 2008, 127(1): 78-88. |
88. | Gonzalez-Rey E, Chorny A, Varela N, et al. Therapeutic effect of urocortin on collagen-induced arthritis by down-regulation of inflammatory and Th1 responses and induction of regulatory T cells[J]. Arthritis and rheumatism, 2007, 56(2): 531-543. |
89. | Sonderegger I, Rohn TA, Kurrer MO, et al. Neutralization of IL-17 by active vaccination inhibits IL-23-dependent autoimmune myocarditis[J]. European journal of immunology, 2006, 36(11): 2849-2856. |
- 1. Stern AS, Podlaski FJ, Hulmes JD, et al. Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B-lymphoblastoid cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(17): 6808-6812.
- 2. Schoenhaut DS, Chua AO, Wolitzky AG, et al. Cloning and expression of murine IL-12[J]. J Immunol, 1992, 148(11): 3433-3440.
- 3. Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12[J]. Immunity, 2000, 13(5): 715-725.
- 4. Pflanz S, Timans JC, Cheung J, et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4(+) T cells[J]. Immunity, 2002, 16(6): 779-790.
- 5. Devergne O, Hummel M, Koeppen H, et al. A novel interleukin-12 p40-related protein induced by latent Epstein-Barr virus infection in B lymphocytes[J]. Journal of virology, 1996, 70(2): 1143-1153.
- 6. Gehlert T, Devergne O, Niedobitek G. Epstein-Barr virus (EBV) infection and expression of the interleukin-12 family member EBV-induced gene 3 (EBI3) in chronic inflammatory bowel disease[J]. Journal of medical virology, 2004, 73(3): 432-438.
- 7. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity[J]. Nature reviews Immunology, 2003, 3(2): 133-146.
- 8. Nagai H, Oniki S, Fujiwara S, et al. Antitumor activities of interleukin-27 on melanoma[J]. Endocrine, metabolic & immune disorders drug targets, 2010, 10(1): 41-46.
- 9. Goriely S, Goldman M. The interleukin-12 family: new players in transplantation immunity[J]? American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 2007, 7(2): 278-284.
- 10. Wang KS, Frank DA, Ritz J. Interleukin-2 enhances the response of natural killer cells to interleukin-12 through up-regulation of the interleukin-12 receptor and STAT4[J]. Blood, 2000, 95(10): 3183-3190.
- 11. van de Vosse E, Lichtenauer-Kaligis EG, van Dissel JT, et al. Genetic variations in the interleukin-12/interleukin-23 receptor (beta1) chain, and implications for IL-12 and IL-23 receptor structure and function[J]. Immunogenetics, 2003, 54(12): 817-829.
- 12. Parham C, Chirica M, Timans J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R[J]. J Immunol, 2002, 168(11): 5699-5708.
- 13. Pflanz S, Hibbert L, Mattson J, et al. WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27[J]. J Immunol, 2004, 172(4): 2225-2231.
- 14. Taga T, Kishimoto T. Gp130 and the interleukin-6 family of cytokines[J]. Annual review of immunology, 1997, 15: 797-819.
- 15. Ihle JN, Witthuhn BA, Quelle FW, et al. Signaling through the hematopoietic cytokine receptors[J]. Annual review of immunology, 1995, 13: 369-398.
- 16. Heinrich PC, Behrmann I, Muller-Newen G, et al. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway[J]. The Biochemical journal, 1998, 334 ( Pt 2): 297-314.
- 17. Ning-Wei Z. Interleukin (IL)-35 is raising our expectations[J]. Revista medica de Chile, 2010, 138(6): 758-766.
- 18. Collison LW, Vignali DA. Interleukin-35: odd one out or part of the family? [J] Immunological reviews, 2008, 226: 248-262.
- 19. Takaoka A, Yanai H, Kondo S, et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors[J]. Nature, 2005, 434(7030): 243-249.
- 20. Ouyang X, Negishi H, Takeda R, et al. Cooperation between MyD88 and TRIF pathways in TLR synergy via IRF5 activation[J]. Biochemical and biophysical research communications, 2007, 354(4): 1045-1051.
- 21. Negishi H, Fujita Y, Yanai H, et al. Evidence for licensing of IFN-gamma-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(41): 15136-15141.
- 22. Goriely S, Molle C, Nguyen M, et al. Interferon regulatory factor 3 is involved in Toll-like receptor 4 (TLR4)- and TLR3-induced IL-12p35 gene activation[J]. Blood, 2006, 107(3): 1078-1084.
- 23. Liu J, Cao S, Herman LM, et al. Differential regulation of interleukin (IL)-12 p35 and p40 gene expression and interferon (IFN)-gamma-primed IL-12 production by IFN regulatory factor 1[J]. The Journal of experimental medicine, 2003, 198(8): 1265-1276.
- 24. Liu J, Guan X, Tamura T, et al. Synergistic activation of interleukin-12 p35 gene transcription by interferon regulatory factor-1 and interferon consensus sequence-binding protein[J]. The Journal of biological chemistry, 2004, 279(53): 55609-55617.
- 25. Weinmann AS, Plevy SE, Smale ST. Rapid and selective remodeling of a positioned nucleosome during the induction of IL-12 p40 transcription[J]. Immunity, 1999, 11(6): 665-675.
- 26. Goriely S, Demonte D, Nizet S, et al. Human IL-12(p35) gene activation involves selective remodeling of a single nucleosome within a region of the promoter containing critical Sp1-binding sites[J]. Blood, 2003, 101(12): 4894-4902.
- 27. Goriely S, Neurath MF, Goldman M. How microorganisms tip the balance between interleukin-12 family members[J]. Nature reviews Immunology, 2008, 8(1): 81-86.
- 28. Wirtz S, Becker C, Fantini MC, et al. EBV-induced gene 3 transcription is induced by TLR signaling in primary dendritic cells via NF-kappa B activation[J]. J Immunol, 2005, 174(5): 2814-2824.
- 29. Fantini MC, Becker C, Monteleone G, et al. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7[J]. J Immunol, 2004, 172(9): 5149-5153.
- 30. Zheng SG, Wang JH, Koss MN, et al. CD4+ and CD8+ regulatory T cells generated ex vivo with IL-2 and TGF-beta suppress a stimulatory graft-versus-host disease with a lupus-like syndrome[J]. J Immunol, 2004, 172(3): 1531-1539.
- 31. Tran DQ, Ramsey H, Shevach EM. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype[J]. Blood, 2007, 110(8): 2983-2990.
- 32. Collison LW, Workman CJ, Kuo TT, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function[J]. Nature, 2007, 450(7169): 566-569.
- 33. Zheng Y, Josefowicz SZ, Kas A, et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells[J]. Nature, 2007, 445(7130): 936-940.
- 34. Wolf SF, Temple PA, Kobayashi M, et al. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells[J]. J Immunol, 1991, 146(9): 3074-3081.
- 35. Allan SE, Song-Zhao GX, Abraham T, et al. Inducible reprogramming of human T cells into Treg cells by a conditionally active form of FOXP3[J]. European journal of immunology, 2008, 38(12): 3282-3289.
- 36. Chaturvedi V, Collison LW, Guy CS, et al. Cutting edge: Human regulatory T cells require IL-35 to mediate suppression and infectious tolerance[J]. J Immunol, 2011, 186(12): 6661-6666.
- 37. Morgan ME, Flierman R, van Duivenvoorde LM, et al. Effective treatment of collagen-induced arthritis by adoptive transfer of CD25+ regulatory T cells[J]. Arthritis and rheumatism, 2005, 52(7): 2212-2221.
- 38. Morgan ME, Sutmuller RP, Witteveen HJ, et al. CD25+ cell depletion hastens the onset of severe disease in collagen-induced arthritis[J]. Arthritis and rheumatism, 2003, 48(5): 1452-1460.
- 39. Gonzalez-Rey E, Fernandez-Martin A, Chorny A, et al. Vasoactive intestinal peptide induces CD4+,CD25+ T regulatory cells with therapeutic effect in collagen-induced arthritis[J]. Arthritis and rheumatism, 2006, 54(3): 864-876.
- 40. Niedbala W, Wei XQ, Cai B, et al. IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells[J]. European journal of immunology, 2007, 37(11): 3021-3029.
- 41. Schottelius AJ, Mayo MW, Sartor RB, et al. Interleukin-10 signaling blocks inhibitor of kappaB kinase activity and nuclear factor kappaB DNA binding[J]. The Journal of biological chemistry, 1999, 274(45): 31868-31874.
- 42. Collison LW, Pillai MR, Chaturvedi V, et al. Regulatory T cell suppression is potentiated by target T cells in a cell contact, IL-35- and IL-10-dependent manner[J]. J Immunol, 2009, 182(10): 6121-6128.
- 43. Mottet C, Uhlig HH, Powrie F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells[J]. J Immunol, 2003, 170(8): 3939-3943.
- 44. Colgan J, Rothman P. All in the family: IL-27 suppression of T(H)-17 cells[J]. Nature immunology, 2006, 7(9): 899-901.
- 45. Niedbala W, Cai B, Liu H, et al. Nitric oxide induces CD4+CD25+ Foxp3 regulatory T cells from CD4+CD25 T cells via p53, IL-2, and OX40[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(39): 15478-15483.
- 46. Lund JM, Hsing L, Pham TT, et al. Coordination of early protective immunity to viral infection by regulatory T cells[J]. Science, 2008, 320(5880): 1220-1224.
- 47. Haribhai D, Lin W, Relland LM, et al. Regulatory T cells dynamically control the primary immune response to foreign antigen[J]. J Immunol, 2007, 178(5): 2961-2972.
- 48. Kim JM, Rasmussen JP, Rudensky AY. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice[J]. Nature immunology, 2007, 8(2): 191-197.
- 49. Kassiotis G, O’Garra A. Immunology. Immunity benefits from a little suppression[J]. Science, 2008, 320(5880): 1168-1169.
- 50. Kempe S, Heinz P, Kokai E, et al. Epstein-barr virus-induced gene-3 is expressed in human atheroma plaques[J]. The American journal of pathology, 2009, 175(1): 440-447.
- 51. Hsieh CS, Liang Y, Tyznik AJ, et al. Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors[J]. Immunity, 2004, 21(2): 267-277.
- 52. Pacholczyk R, Ignatowicz H, Kraj P, et al. Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells[J]. Immunity, 2006, 25(2): 249-259.
- 53. Almeida AR, Zaragoza B, Freitas AA. Indexation as a novel mechanism of lymphocyte homeostasis: the number of CD4+CD25+ regulatory T cells is indexed to the number of IL-2-producing cells[J]. J Immunol, 2006, 177(1): 192-200.
- 54. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells[J]. Nature, 200, 441(7090): 235-238.
- 55. Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nature immunology, 2005, 6(11): 1123-1132.
- 56. Wahl SM, Wen J, Moutsopoulos N. TGF-beta: a mobile purveyor of immune privilege[J]. Immunological reviews, 2006, 213: 213-227.
- 57. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J]. Nature immunology, 2005, 6(11): 1133-1141.
- 58. Kolls JK, Linden A. Interleukin-17 family members and inflammation[J]. Immunity, 2004, 21(4): 467-476.
- 59. Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation[J]. The Journal of experimental medicine, 2005, 201(2): 233-240.
- 60. Ivanov, II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells[J]. Cell, 2006, 126(6): 1121-1133.
- 61. Yang J, Yang M, Htut TM, et al. Epstein-Barr virus-induced gene 3 negatively regulates IL-17, IL-22 and RORgamma t[J]. European journal of immunology, 2008, 38(5): 1204-1214.
- 62. Steinman L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system[J]. Cell, 1996, 85(3): 299-302.
- 63. Zheng Y, Rudensky AY. Foxp3 in control of the regulatory T cell lineage[J]. Nature immunology, 2007, 8(5): 457-462.
- 64. Adorini L. Interleukin-12, a key cytokine in Th1-mediated autoimmune diseases[J]. Cellular and molecular life sciences : CMLS, 1999, 55(12): 1610-1625.
- 65. Karp CL, Biron CA, Irani DN. Interferon beta in multiple sclerosis: is IL-12 suppression the key? [J]Immunology today, 2000, 21(1): 24-28.
- 66. Constantinescu CS, Wysocka M, Hilliard B, et al. Antibodies against IL-12 prevent superantigen-induced and spontaneous relapses of experimental autoimmune encephalomyelitis[J]. J Immunol, 1998, 161(9): 5097-5104.
- 67. Leonard JP, Waldburger KE, Goldman SJ. Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12[J]. The Journal of experimental medicine, 1995, 181(1): 381-386.
- 68. Costa GL, Sandora MR, Nakajima A, et al. Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit[J]. J Immunol, 2001, 167(4): 2379-2387.
- 69. Becher B, Durell BG, Noelle RJ. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12[J]. The Journal of clinical investigation, 2002, 110(4): 493-497.
- 70. Gran B, Zhang GX, Yu S, et al. IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination[J]. J Immunol, 2002, 169(12): 7104-7110.
- 71. Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain[J]. Nature, 2003, 421(6924): 744-748.
- 72. Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17[J]. The Journal of biological chemistry, 2003, 278(3): 1910-1914.
- 73. Nagai T, Devergne O, van Seventer GA, et al. Interferon-beta mediates opposing effects on interferon-gamma-dependent Interleukin-12 p70 secretion by human monocyte-derived dendritic cells[J]. Scandinavian journal of immunology, 2007, 65(2): 107-117.
- 74. Goldberg R, Zohar Y, Wildbaum G, et al. Suppression of ongoing experimental autoimmune encephalomyelitis by neutralizing the function of the p28 subunit of IL-27[J]. J Immunol, 2004, 173(10): 6465-6471.
- 75. Kohm AP, Carpentier PA, Anger HA, et al. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis[J]. J Immunol, 2002, 169(9): 4712-4716.
- 76. McHugh RS, Shevach EM. The role of suppressor T cells in regulation of immune responses[J]. The Journal of allergy and clinical immunology, 2002, 110(5): 693-702.
- 77. McGeachy MJ, Stephens LA, Anderton SM. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system[J]. J Immunol, 2005, 175(5): 3025-3032.
- 78. Neu N, Rose NR, Beisel KW, et al. Cardiac myosin induces myocarditis in genetically predisposed mice[J]. J Immunol, 1987, 139(11): 3630-3636.
- 79. Reddy J, Illes Z, Zhang X, et al. Myelin proteolipid protein-specific CD4+CD25+ regulatory cells mediate genetic resistance to experimental autoimmune encephalomyelitis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(43): 15434-15439.
- 80. Thakker P, Leach MW, Kuang W, et al. IL-23 is critical in the induction but not in the effector phase of experimental autoimmune encephalomyelitis[J]. J Immunol, 2007, 178(4): 2589-2598.
- 81. Courtenay JS, Dallman MJ, Dayan AD, et al. Immunisation against heterologous type II collagen induces arthritis in mice[J]. Nature, 1980, 283(5748): 666-668.
- 82. Lubberts E, van den Bersselaar L, Oppers-Walgreen B, et al. IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-kappa B ligand/osteoprotegerin balance[J]. J Immunol, 2003, 170(5): 2655-2662.
- 83. Rohn TA, Jennings GT, Hernandez M, et al. Vaccination against IL-17 suppresses autoimmune arthritis and encephalomyelitis[J]. European journal of immunology, 2006, 36(11): 2857-2867.
- 84. Murphy CA, Langrish CL, Chen Y, et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation[J]. The Journal of experimental medicine, 2003, 198(12): 1951-1957.
- 85. Kelchtermans H, Geboes L, Mitera T, et al. Activated CD4+CD25+ regulatory T cells inhibit osteoclastogenesis and collagen-induced arthritis[J]. Annals of the rheumatic diseases, 2009, 68(5): 744-750.
- 86. Delgado M, Toscano MG, Benabdellah K, et al. In vivo delivery of lentiviral vectors expressing vasoactive intestinal peptide complementary DNA as gene therapy for collagen-induced arthritis[J]. Arthritis and rheumatism, 2008, 58(4): 1026-1037.
- 87. Seki M, Oomizu S, Sakata KM, et al. Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis[J]. Clin Immunol, 2008, 127(1): 78-88.
- 88. Gonzalez-Rey E, Chorny A, Varela N, et al. Therapeutic effect of urocortin on collagen-induced arthritis by down-regulation of inflammatory and Th1 responses and induction of regulatory T cells[J]. Arthritis and rheumatism, 2007, 56(2): 531-543.
- 89. Sonderegger I, Rohn TA, Kurrer MO, et al. Neutralization of IL-17 by active vaccination inhibits IL-23-dependent autoimmune myocarditis[J]. European journal of immunology, 2006, 36(11): 2849-2856.
-
Previous Article
恶性肿瘤肥胖患者化学疗法药物剂量计算的研究进展 -
Next Article
头颈部癌的分子靶向治疗进展