1. |
Kenneth K, Marshall AL, Ernest B, et al. Williams Hematology[M]. 8th ed. New York: McGraw-Hill Education, 2010: 1527-1532.
|
2. |
Chng WJ, Kumar S, Vanwier S, et al. Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling[J]. Cancer Res, 2007, 67(7): 2982-2989.
|
3. |
Fonseca R, Barlogie B, Bataille R, et al. Genetics and cytogenetics of multiple myeloma: a workshop report[J]. Cancer Res, 2004, 64(4): 1546-1558.
|
4. |
Agnelli L, Fabris S, Bicciato S, et al. Upregulation of translational machinery and distinct genetic subgroups characterise hyperdiploidy in multiple myeloma[J]. Br J Haematol, 2007, 136(4): 565-573.
|
5. |
Bergsagel PL, Kuehl WM, Zhan FH, et al. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma[J]. Blood, 2005, 106(1): 296-303.
|
6. |
Gonzalez D, Van Der Burg M, Garcia-Sanz RA, et al. Immunoglobulin gene rearrangements and the pathogenesis of multiple myeloma[J]. Blood, 2007, 110(9): 3112-3121.
|
7. |
Rio-Machin A, Ferreira BI, Henry T, et al. Downregulation of specific miRNAs in hyperdiploid multiple myeloma mimics the oncogenic effect of IgH translocations occurring in the non-hyperdiploid subtype[J]. Leukemia, 2013, 27(4): 925-931.
|
8. |
Demchenko YN, Glebov OK, Zingone A, et al. Classical and/or alternative NF-kappaB pathway activation in multiple myeloma[J]. Blood, 2010, 115(17): 3541-3552.
|
9. |
Annunziata CM, Davis RE, Demchenko Y, et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma[J]. Cancer Cell, 2007, 12(2): 115-130.
|
10. |
Walker BA, Leone PE, Chiecchio L, et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value[J]. Blood, 2010, 116(15): e56-e65.
|
11. |
Walker BA, Wardell CP, Chiecchio L, et al. Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma[J]. Blood, 2011, 117(2): 553-562.
|
12. |
Hu Y, Chen L, Sun CY, et al. Clinical significance of chromosomal abnormalities detected by interphase fluorescence in situ hybridization in newly diagnosed multiple myeloma patients[J]. Chin Med J, 2011, 124(19): 2981-2985.
|
13. |
Gao X, Li C, Zhang R, et al. Fluorescence in situ hybridization analysis of chromosome aberrations in 60 Chinese patients with multiple myeloma[J]. Med Oncol, 2012, 29(3): 2200-2206.
|
14. |
Lim AS, Lim TH, See KH, et al. Cytogenetic and molecular aberrations of multiple myeloma patients: a single-center study in Singapore[J]. Chin Med J, 2013, 126(10): 1872-1877.
|
15. |
Neben K, Jauch A, Hielscher T, et al. Progression in smoldering myeloma is independently determined by the chromosomal abnormalities del (17p), t (4; 14), gain 1q, hyperdiploidy, and tumor load[J]. J Clin Oncol, 2013, 31(34): 4325-4332.
|
16. |
Liebisch P, Scheck D, Erné SA, et al. Duplication of chromosome arms 9q and 11q: evidence for a novel, 14q32 translocation-independent pathogenetic pathway in multiple myeloma[J]. Genes Chromosomes Cancer, 2005, 42(1): 78-81.
|
17. |
Munshi NC, Anderson KC, Bergsagel PL, et al. Consensus recommendations for risk stratification in multiple myeloma: report of the International Myeloma Workshop Consensus Panel 2[J]. Blood. 2011, 117(18): 4696-4700.
|
18. |
Shaughnessy JD, Zhan FH, Burington BE, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1[J]. Blood, 2007, 109(6): 2276-2284.
|
19. |
Decaux O, Lodé L, Magrangeas F, et al. Prediction of survival in multiple myeloma based on gene expression profiles reveals cell cycle and chromosomal instability signatures in high-risk patients and hyperdiploid signatures in low-risk patients: a study of the Intergroupe Francophone du Myélome[J]. J Clin Oncol, 2008, 26(29): 4798-4805.
|
20. |
Smetana J, Dementyeva E, Kryukov F, et al. Incidence of cytogenetic aberrations in two B lineage subpopulations in multiple myeloma patients analyzed by combination of whole-genome profiling and FISH[J]. Neoplasma, 2014, 61(1): 48-55.
|
21. |
Smetana J, Fröhlich J, Vranová V, et al. Oligonucleotide-based array CGH as a diagnostic tool in multiple myeloma patients[J]. Klio Onkol, 2011, 24(Suppl): 43-48.
|
22. |
Zhan FH, Huang YS, Colla S, et al. The molecular classification of multiple myeloma[J]. Blood, 2006, 108(6): 2020-2028.
|
23. |
Avet-Loiseau H, Li C, Magrangeas F, et al. Prognostic significance of copy-number alterations in multiple myeloma[J]. J Clin Oncol, 2009, 27(27): 4585-4590.
|
24. |
Barlogie B, Pineda-Roman M, Van Rhee F, et al. Thalidomide arm of Total Therapy 2 improves complete remission duration and survival in myeloma patients with metaphase cytogenetic abnormalities[J]. Blood, 2008, 112(8): 3115-3121.
|
25. |
Avet-Loiseau H, Leleu X, Roussel M, et al. Bortezomib plus dexamethasone induction improves outcome of patients with t (4; 14) myeloma but not outcome of patients with del(17p)[J]. J Clin Oncol, 2010, 28(30): 4630-4634.
|
26. |
Ito T, Ando H, Suzuki T, et al. Identification of a primary target of Thalidomide teratogenicity[J]. Science, 2010, 327(5971): 1345-1350.
|
27. |
Broyl A, Kuiper R, Van Duin M, et al. High cereblon expression is associated with better survival in patients with newly diagnosed multiple myeloma treated with Thalidomide maintenance[J]. Blood, 2013, 121(4): 624-627.
|
28. |
Zhu YX, Braggio E, Shi CX, et al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide[J]. Blood, 2011, 118(18): 4771-4779.
|
29. |
Oerlemans R, Franke NE, Assaraf YG, et al. Molecular basis of bortezomib resistance: proteasome subunit beta5(PSMB5) gene mutation and overexpression of PSMB5 protein[J]. Blood, 2008, 112(6): 2489-2499.
|
30. |
Kuhn DJ, Hunsucker SA, Chen Q, et al. Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors[J]. Blood, 2009, 113(19): 4667-4676.
|
31. |
Jagannath S, Richardson PG, Barlogie B, et al. Bortezomib in combination with dexamethasone for the treatment of patients with relapsed and/or refractory multiple myeloma with less than optimal response to bortezomib alone[J]. Haematologica, 2006, 91(7): 929-934.
|
32. |
Kuhn DJ, Berkova Z, Jones RJ, et al. Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma[J]. Blood, 2012, 120(16): 3260-3270.
|
33. |
Brown CO, Schibler J, Fitzgerald MP, et al. Scavenger receptor class A member 3(SCARA3) in disease progression and therapy resistance in multiple myeloma[J]. Leuk Res, 2013, 37(8): 963-969.
|
34. |
Que W, Li S, Chen J. NS-398 enhances the efficacy of bortezomib against RPMI8226 human multiple myeloma cells[J]. Mol Med Rep, 2013, 7(5): 1641-1645.
|
35. |
Fuchs O. Targeting of NF-kappaB signaling pathway, other signaling pathways and epigenetics in therapy of multiple myeloma[J]. Cardiovasc Hematol Disord Drug Targets, 2013, 13(1): 16-34.
|