1. |
Ehrlich P. Das sauerstoff-Bedürfnis des organismus:eine farbanalytische studie[M]. Berlin:Hirschwald, 1885:3-16.
|
2. |
Pardridge WM. Blood-brain barrier delivery[J]. Drug Discov Today, 2007, 12(1/2):54-61.
|
3. |
Blasberg RG, Patlak C, Fenstermacker JD. Intrathecal chemotherapy:brain tissue profiles after verntriculocisternal perfusion[J]. J Pharmacol Exp Ther, 1975, 195(1):73-83.
|
4. |
Pardridge WM. The blood-brain barrier:bottleneck in brain drug development[J]. NeuroRx, 2005, 2(1):3-14.
|
5. |
Pardridge WM. Drug targeting to the brain[J]. Pharm Res, 2007, 24(9):1733-1744.
|
6. |
Bobo RH, Laske DW, Akbasak A, et al. Convection-enhanced delivery of macromolecules in the brain[J]. Proc Natl Acad Sci USA, 1994, 91(6):2076-2080.
|
7. |
Vandergrift WA, Patel SJ, Nicholas JS, et al. Convection-enhanced delivery of immunotoxins and radioisotopes for treatment of malignant gliomas[J]. Neurosurg Focus, 2006, 20(4):E13.
|
8. |
Fung LK, Ewend MG, Sills A, et al. Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain[J]. Cancer Res, 1998, 58(4):672-684.
|
9. |
Fortin D, Desjardins A, Benko A, et al. Enhanced chemotherapy delivery by intraarterial infusion and blood-brain barrier disruption in malignant brain tumors:the Sherbrooke experience[J]. Cancer, 2005, 103(12):2606-2615.
|
10. |
Hynynen K, Mcdannold N, Vykhodtseva N, et al. Noninvasive Mr imaging-guided focal opening of the blood-brain barrier in rabbits[J]. Radiology, 2001, 220(3):640-646.
|
11. |
Gabathuler R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases[J]. Neurobiol Dis, 2010, 37(1):48-57.
|
12. |
Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings[J]. Adv Drug Deliv Rev, 2001, 46(1/2/3):3-26.
|
13. |
Bradley MO, Webb NL, Anthony FH, et al. Tumor targeting by covalent conjugation of a natural fatty acid to paclitaxel[J]. Clin Cancer Res, 2001, 7(10):3229-3238.
|
14. |
Batra kova EV, Kabanov AV. Pluronic block copolymers:evolution of drug delivery concept from inert nanocarriers to biological response modifiers[J]. J Control Release, 2008, 130(2):98-106.
|
15. |
Qu X, Khutoryanskiy VV, Stewart A, et al. Carbohydrate-based micelle clusters which enhance hydrophobic drug bioavailability by up to 1 order of magnitude[J]. Biomacromolecules, 2006, 7(12):3452-3459.
|
16. |
Allen DD, Lockman PR, Roder KE, et al. Active transport of highaffinity choline and nicotine analogs into the central nervous system by the blood-brain barrier choline transporter[J]. J Pharmacol Exp Ther, 2003, 304(3):1268-1274.
|
17. |
Pardridge WM. Blood-brain barrier drug targeting:the future of brain drug development[J]. Mol Interv, 2003, 3(2):90-105, 51.
|
18. |
Zhang Y, Pardridge WM. Delivery of beta-galactosidase to mouse brain via the blood-brain barrier transferrin receptor[J]. J Pharmacol Exp Ther, 2005, 313(3):1075-1081.
|
19. |
Zhang Y, Pardridge WM. Blood-brain barrier targeting of BDNF improves motor function in rats with middle cerebral artery occlusion[J]. Brain Res, 2006, 1111(1):227-229.
|
20. |
Ulbrich K, Hekmatara T, Herbert E, et al. Transferrin-and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB)[J]. Eur J Pharm Biopharm, 2009, 71(2):251-256.
|
21. |
Coloma MJ, Lee HJ, Kurihara A, et al. Transport across the Primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor[J]. Pharm Res, 2000, 17(3):266-274.
|
22. |
Jones AR, Shusta EV. Blood-brain barrie r transport of therapeutics via receptor-mediation[J]. Pharm Res, 2007, 24(9):1759-1771.
|
23. |
Boado RJ, Zhang Y, Zhang Y, et al. GDNF fusion protein for targeted-drug delivery across the human blood-brain barrier[J]. Biotechnol Bioeng, 2008, 100(2):387-396.
|
24. |
Moos T, Morgan EH. Transferrin and transferrin receptor function in brain barrier systems[J]. Cell Mol Neurobiol, 2000, 20(1):77-95.
|
25. |
Gosk S, Vermehren C, Storm G, et al. Targeting anti-transferrin receptor antibody (OX26) and OX26-conjugated liposomes to brain capillary endothelial cells using in situ perfusion[J]. J Cereb Blood Flow Metab, 2004, 24(11):1193-1204.
|
26. |
Pardridge WM. shRNA and siRNA delivery to the brain[J]. Adv Drug Deliv Rev, 2007, 59(2/3):141-152.
|
27. |
Herz J, Strickland DK. LRP:a multifunctional scavenger and signaling receptor[J]. J Clin Invest, 2001, 108(6):779-784.
|
28. |
Bu G, Maksymovitch EA, Nerbonne JM, et al. Expression and function of the low density lipoprotein receptor-related protein (LRP) in mammalian central neurons[J]. J Biol Chem, 1994, 269(28):18521-18528.
|
29. |
Yamamoto M, Ikeda K, Ohshima K, et al. Increased expression of low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor in human malignant astrocytomas[J]. Cancer Res, 1997, 57(13):2799-2805.
|
30. |
Olivier JC. Drug transport to brain with targeted nanoparticles[J]. NeuroRx, 2005, 2(1):108-119.
|
31. |
Kreuter J, Shamenkov D, Petrov V, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier[J]. J Drug Target, 2002, 10(4):317-325.
|
32. |
Pan W, Kastin AJ, Zankel TC, et al. Efficient transfer of receptorassociated protein (RAP) across the blood-brain barrier[J]. J Cell Sci, 2004, 117(Pt 21):5071-5078.
|
33. |
Migliorini MM, Behre EH, Brew S, et al. Allosteric modulation of ligand binding to low density lipoprotein receptor-related protein by the receptor-associated protein requires critical lysine residues within its carboxyl-terminal domain[J]. J Biol Chem, 2003, 278(20):17986-17992.
|
34. |
Prince WS, McCormick LM, Wendt DJ, et al. Lipoprotein receptor binding, cellular uptake, and lysosomal delivery of fusions between the receptor-associated protein (RAP) and alpha-L-iduronidase or acid alpha-glucosidase[J]. J Biol Chem, 2004, 279(33):35037-35046.
|
35. |
Demeule M, Régina A, Ché C, et al. Identification and design of peptides as a new drug delivery system for the brain[J]. J Pharmacol Exp Ther, 2008, 324(3):1064-1072.
|
36. |
Demeule M, Currie JC, Bertrand Y, et al. Involvement of the lowdensity lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2[J]. J Neurochem, 2008, 106(4):1534-1544.
|
37. |
Donahue JE, Flaherty SL, Johanson CE, et al. RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease[J]. Acta neuropathologica, 2006, 112(4):405-415.
|
38. |
Thomas FC, Taskar K, Rudraraju V, et al. Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer[J]. Pharm Res, 2009, 26(11):2486-2494.
|
39. |
Temsamani J, Rousselle C, Rees AR, et al. Vector-mediated drug delivery to the brain[J]. Expert Opin Biol Ther, 2001, 1(5):773-782.
|
40. |
Rousselle C, Clair P, Smirnova M, et al. Improved brain uptake and pharmacological activity of dalargin using a peptide-vectormediated strategy[J]. J Pharmacol Exp Ther, 2003, 306(1):371-376.
|
41. |
Liu L, Guo K, Lu J, et al. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier[J]. Biomaterials, 2008, 29(10):1509-1517.
|
42. |
Agyare EK, Curran GL, Ramakrishnan M, et al. Development of a smart nano-vehicle to target cerebrovascular amyloid deposits and brain parenchymal plaques observed in Alzheimer's disease and cerebral amyloid angiopathy[J]. Pharm Res, 2008, 25(11):2674-2684.
|
43. |
Kumar P, Wu H, Mcbride JL, et al. Transvascular delivery of small interfering RNA to the central nervous system[J]. Nature, 2007, 448(7149):39-43.
|
44. |
Lockman PR, Koziara JM, Mumper RJ, et al. Nanoparticle surface charges alter blood-brain barrier integrity and permeability[J]. J Drug Target, 2004, 12(9/10):635-641.
|