1. |
Kouzarides T. Chromatin modifications and their function[J]. Cell, 2007, 128(4):693-705.
|
2. |
Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes[J]. Biochim Biophys Acta, 2004, 1695 (1/2/3):189-207.
|
3. |
Suganuma T, Workman JL. Signals and combinatorial functions of histone modifications[J]. Annu Rev Bioche, 2011, 80:473-499.
|
4. |
Hake SB, Xiao A, Allis CD. Linking the epigenetic "language" of covalent histone modifications to cancer[J]. Br J Cancer, 2004, 90(4):761-769.
|
5. |
Misri S, Pandita S, Kumar R, et al. Telomeres, histone code, and DNA damage response[J]. Cytogenet Genome Res, 2008, 122(3/4):297-307.
|
6. |
Strahl BD, Allis CD. The language of covalent histone modification[J]. Nature, 2000, 403(6765):41-45.
|
7. |
Vijay-Kumar S, Bugg CE, Cook WJ. Structure of ubiquitin refined at 1.8 A resolution[J]. J Mol Biol, 1987, 194(3):531-544.
|
8. |
Wilkinson KD. Ubiquitination and deubiquitination:targeting of proteins for degradation by the proteasome[J]. Semin Cell Dev Biol, 2000, 11(3):141-148.
|
9. |
Oddo S. The ubiquitin-proteasome system in Alzheimer's disease[J]. J Cell Mol Med, 2008, 12(2):363-373.
|
10. |
Chung CH, Baek SH. Deubiquitinating enzymes:their diversity and emerging roles[J]. Biochem Biophys Res Commun, 1999, 266(3):633-640.
|
11. |
Lee D, Ezhkova E, Li B, et al. The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators[J]. Cell, 2005, 123(3):423-436.
|
12. |
Swaminathan S, Amerik AY, Hochstrasser M. The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast[J]. Mol Biol Cell, 1999, 10(8):2583-2594.
|
13. |
Mueller RD,Yasuda H,Hatch CL, et al. Identification of ubiquitinated histones 2A and 2B in Physarum polycephalum. Disappearance of these proteins at metaphase and reappearance at anaphase[J]. J Biol Chem, 1985, 260 (8):5147-5153.
|
14. |
Joo HY, Zhai L, Yang C, et al. Regulation of cell cycle progression and gene expression by H2A deubiquitination[J]. Nature, 2007, 449(7165):1068-1072.
|
15. |
Ingvarsdottir K, Krogan NJ, Emre NC, et al. H2B ubiquitin protease Ubp8 and Sgf11 constitute a discrete functional module within the Saccharomyces cerevisiae SAGA complex[J]. Mol Cell Biol, 2005, 25(3):1162-1172.
|
16. |
Emre NC, Ingvarsdottir K, Wyce A, et al. Maintenance of low histone ubiquitylation by Ubp10 correlates with telomere-proximal Sir2 association and gene silencing[J]. Mol Cell, 2005, 17(4):585-594.
|
17. |
Weake VM, Lee KK, Guelman S, et al. SAGA-mediated H2B deubiquitination controls the development of neuronal connectivity in the Drosophila visual system[J]. EMBO J, 2008, 27(2):394-405.
|
18. |
Lee HJ, Kim MS, Shin JM, et al. The expression patterns of deubiquitinating enzymes, USP22 and Usp22[J]. Gene Expr Patterns, 2006, 6(3):277-284.
|
19. |
Atanassov BS, Evrard YA, Multani AS, et al. Gcn5 and SAGA regulate shelterin protein turnover and telomere maintenance[J]. Mol Cell, 2009, 35(3):352-364.
|
20. |
Chipumuro E, Henriksen MA. The ubiquitin hydrolase USP22 contributes to 3'-end processing of JAK-STAT-inducible genes[J]. FASEB, 2012, 26(2):842-854.
|
21. |
Marine JC, Francoz S, Maetens M, et al. Keeping p53 in check:essential and synergistic functions of Mdm2 and Mdm4[J]. Cell Death Differ, 2006, 13(6):927-934.
|
22. |
Li M, Chen D, Shiloh A, et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization[J]. Nature, 2002, 416(6881):648-653.
|
23. |
Brooks CL, Li M, Hu M, et al. The p53——Mdm2——HAUSP complex is involved in p53 stabilization by HAUSP[J]. Oncogene, 2007, 26(51):7262-7266.
|
24. |
Yuan J, Luo K, Zhang L, et al. USP10 regulates p53 localization and stability by deubiquitinating p53[J]. Cell, 2010, 140(3):384-396.
|
25. |
Wicks SJ, Haros K, Maillard M, et al. The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-beta signalling[J]. Oncogene, 2005, 24(54):8080-8084.
|
26. |
叶盛威, 魏少忠. 泛素特异性蛋白酶2与肿瘤[J]. 肿瘤防治研究,2014, 41(5):505-508.
|
27. |
Li J, Wang Z, Li Y. USP22 nuclear expression is significantly associated with progression and unfavorable clinical outcome inhuman esophageal squamous cell carcinoma[J]. J Cancer Res Clin Oncol, 2012, 138(8):1291-1297.
|
28. |
Yang DD, Cui BB, Sun LY, et al. The co-expression of USP22 and BMI-1 may promote cancer progression and predict therapy failure in gastric carcinoma[J]. Cell Biochem Biophys, 2011, 61(3):703-710.
|
29. |
Zhang Y, Yao L, Zhang X, et al. Elevated expression of USP22 in correlation with poor prognosis in patients with invasive breast cancer[J]. J Cancer Res Clin Oncol, 2011, 137(8):1245-1253.
|
30. |
Xu H, Liu YL, Yang YM, et al. Knock-down of ubiquitin-specific protease 22 by micro-RNA interference inhibits coloretal cancer growth[J]. Int J Colorectal Dis, 2011, 27(1):21-30.
|
31. |
Ricky WJ. Histone-deacetylase inhibitors:novel drugs for the treatment of cancer[J]. Nat Rev Drug Discov, 2002, 1(4):287-299.
|
32. |
Johnsen SA. The enigmatic role of H2Bub1 in cancer[J]. FEBS Lett, 2012, 586(11):1592-601.
|
33. |
罗朝蕊, 刘霆. 骨髓增生异常综合征去甲基化药物临床反应的生物学标志研究进展[J]. 华西医学, 2012, 27(5):779-782.
|