1. |
蒋俊威, 王剑, 黄富国, 等. 成人双腓骨游离移植修复股骨远端大骨缺损[J]. 中国修复重建外科杂志, 2004, 18(5): 370-372.
|
2. |
Duan H, Zhang B, Yang HS, et al. Functional outcome of en bloc resection and osteoarticular allograft reconstruction with locking compression plate for giant cell tumor of the distal radius[J].J Orthop Sci, 2013, 18(4): 599-604.
|
3. |
Ieguchi M, Hoshi M, Aono M, et al. Knee Reconstruction with endoprosthesis after extra-articular and intra-articular resection of osteosarcoma[J]. Jpn J Clin Oncol, 2014, 44(9): 812-817.
|
4. |
Zhu W, Guo D, Chen Y, et al. Cytocompatibility of PLA/Nano-HA composites for interface fixation[J]. Artif Cells Nanomed Biotechnol, 2015, 13: 1-5.
|
5. |
Temenoff JS, Mikos AG. Injectable biodegradable materials for orthopedic tissue engineering[J]. Biomaterials, 2000, 21(23):2405-2412.
|
6. |
Khan SN, Cammisa FP, Sandhu HS, et al. The biology of bone grafting[J]. J Am Acad Orthop Surg, 2005, 13(1): 77-86.
|
7. |
Chiang CH, Yeh MK. Contribution of poly (amino acids) to advances in pharmaceutical biotechnology[J]. Curr Pharm Biotechnol, 2003, 4(5): 323-330.
|
8. |
Thomas MV, Puleo DA. Calcium sulfate: properties and clinical applications[J]. J Biomed Mater Res B Appl Biomater, 2009, 88(2):597-610.
|
9. |
Yang X, Li Y, Huang Q, et al. Evaluation of a biodegradable graft substitute in rabbit bone defect model[J]. Indian J Orthop, 2012,46(3): 266-273.
|
10. |
Su B, Peng XH, Jiang D, et al. In vitro and in vivo evaluations of nano-hydroxyapatite/polyamide 66/glass fibre (n-HA/PA66/GF) as a novel bioactive bone screw[J]. PLoS One, 2013, 8(7): e68342.
|
11. |
Qi X, Li H, Qiao B, et al. Development and characterization of an injectable cement of nano calcium-deficient hydroxyapatite/multi (amino acid) copolymer/calcium sulfate hemihydrate for bone repair[J]. Int J Nanomedicine, 2013, 8(8): 4441-4452.
|
12. |
Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site morbidity. A statistical evaluation[J]. Spine (Phila Pa 1976), 1995, 20(9): 1055-1060.
|
13. |
Chouzouri G, Xanthos M. In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers[J]. Acta Biomater, 2007, 3(5): 745-756.
|
14. |
杨雷, 李彬, 杨立利, 等. 应用微创可注射型植骨材料结合内固定治疗胫骨平台骨折[J]. 中华外科杂志, 2006, 44(16): 1122-1124.
|
15. |
Alexander DI, Manson NA, Mitchell MJ. Efficacy of calcium sulfate plus decompression bone in lumbar and lumbosacral spinal fusion:preliminary results in 40 patients[J]. Can J Surg, 2001, 44(4):262-266.
|
16. |
Chang KY, Cheng LW, Ho GH, et al. Fabrication and characterization of poly (gamma-glutamic acid)-graft -chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering[J]. Acta Biomater, 2009, 5(6): 1937-1947.
|
17. |
Lee CT, Huang CP, Lee YD. Biomimetic porous scaffolds made from poly (L-lactide)-g-chondroitin sulfate blend with poly (L-lactide) for cartilage tissue engineering[J]. Biomacromolecules, 2006, 7(7):2200-2209.
|
18. |
Bell WH. Resorption characteristics of bone and bone substitutes[J].Oral Surg Oral Med Oral Pathol, 1964(17): 650-657.
|
19. |
Nilsson M, Wang JS, Wielanek L, et al. Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute[J]. J Bone Joint Surg Br, 2004, 86(1): 120-125.
|
20. |
Turner TM, Urban RM, Gitelis S, et al. Resorption evaluation of a large bolus of calcium sulfate in a canine medullary defect[J].Orthopedics, 2003, 26(5 Suppl): s577-s579.
|
21. |
Stubbs D, Deakin M, Chapman-Sheath P, et al. In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model[J].Biomaterials, 2004, 25(20): 5037-5044.
|
22. |
Zielak JC, Mathias AL, Da Silva R, et al. Oral tissue response to ovine grafting biomaterial: morphological and morphometric study using scanning electron and light microscopy tissue response to ovine grafting biomaterial[J]. Microsc Res Tech, 2012, 75(10):1395-1401.
|