- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China;
Age is the main cause of neurodegenerative changes in the central nervous system (CNS), and the loss of neurons would increase with the migration of the disease. The current treatment is also mainly used to relieve symptoms, while the function of CNS is very difficult to recover. The emergence of endogenous stem cells has brought new hope for the treatment of CNS diseases. However, this nerve regeneration is only in some specific areas, and the recovery of neural function remains unknown. More and more experts in the field of neuroscience have carried out various in vivo or in vitro experiments, in order to increase nerve regeneration and nerve function recovery through mechanism research, in the expectation that the results would be applied to the treatment of CNS diseases. This article reviews the recent progress of endogenous neural stem cells in degenerative diseases of CNS.
Citation: AI Xiaolin, FANG Fang. The role of endogenous stem cells in central nervous system neurodegenerative diseases. West China Medical Journal, 2018, 33(3): 348-353. doi: 10.7507/1002-0179.201603196 Copy
1. | Ramon Y, Cajal S. Degeneration and regeneration of the nervous system. May RM, Trans. New York: Oxford University Press, 1928. |
2. | Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol, 1965, 124(3): 319-335. |
3. | Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J Neurosci, 2002, 22(3): 629-634. |
4. | Gage FH. Mammalian neural stem cells. Science, 2000, 287(5457): 1433-1438. |
5. | Kempermann G, Gage FH. Neurogenesis in the adult hippocampus. Novartis Found Symp, 2000, 231: 220-235. |
6. | Williams A. Central nervous system regeneration--where are we? QJM, 2014, 107(5): 335-339. |
7. | Curtis MA, Kam M, Nannmark U, et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science, 2007, 315(5816): 1243-1249. |
8. | Kornack DR, Rakic P. Cell proliferation without neurogenesis in adult primate neocortex. Science, 2001, 294(5549): 2127-2130. |
9. | Kriegstein A, Alvarez-Buylla A. The glial Nature of embryonic and adult neural stem cells. Annu Rev Neurosci, 2009, 32: 149-184. |
10. | Doetsch F, García-Verdugo JM, Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci, 1997, 17(13): 5046-5061. |
11. | Sanai N, Tramontin AD, Quiñones-Hinojosa A, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature, 2004, 427(6976): 740-744. |
12. | Quiñones-Hinojosa A, Sanai N, Soriano-Navarro M, et al. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol, 2006, 494(3): 415-434. |
13. | Roelofs RF, Fischer DF, Houtman SH, et al. Adult human subventricular, subgranular, and subpial zones contain astrocytes with a specialized intermediate filament cytoskeleton. Glia, 2005, 52(4): 289-300. |
14. | Kam M, Curtis MA, Mcglashan SR, et al. The cellular composition and morphological organization of the rostral migratory stream in the adult human brain. J Chem Neuroanat, 2009, 37(3): 196-205. |
15. | Wang C, Liu F, Liu YY, et al. Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res, 2011, 21(11): 1534-1550. |
16. | vanstrien ME, vandenberge SA, Hol EM, et al. Migrating neuroblasts in the adult human brain: a stream reduced to atrickle. Cell Res, 2011, 21(11): 1523-1525. |
17. | van den Berge SA, van Strien ME, Korecka JA, et al. The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain. Brain, 2011, 134(Pt 11): 3249-3263. |
18. | Sanai N, Nguyen T, Ihrie RA, et al. Corridors of migrating neurons in the human brain and their decline during infancy. Nature, 2011, 478(7369): 382-386. |
19. | Persson A, Lindwall C, Curtis MA, et al. Expression of ezrin radixin moesin proteins in the adult subventricular zone and the rostral migratory stream. Neuroscience, 2010, 167(2): 312-322. |
20. | Costa MR, Götz M, Berninger B. What determines neurogenic competence in glia? Brain Res Rev, 2010, 63(1/2): 47-59. |
21. | Robel S, Berninger B, Götz M. The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci, 2011, 12(2): 88-104. |
22. | Buffo A, Rite I, Tripathi P, et al. Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc Natl Acad Sci USA, 2008, 105(9): 3581-3586. |
23. | Kamphuis W, Orre M, Kooijman L, et al. Differential cell proliferation in the cortex of the APPswePS1dE9 Alzheimer’s disease mouse model. Glia, 2012, 60(4): 615-629. |
24. | Wang S, Okun MS, Suslov O, et al. Neurogenic potential of progenitor cells isolated from postmortem human Parkinsonian brains. Brain Res, 2012, 1464: 61-72. |
25. | Pérez-Martín M, Cifuentes M, Grondona JM, et al. IGF-I stimulates neurogenesis in the hypothalamus of adult rats. Eur J Neurosci, 2010, 31(9): 1533-1548. |
26. | Zhang J, Lv XJ, Jia X, et al. Labeling primary nerve stem cells with quantum dots. J Nanosci Nanotechnol, 2011, 11(11): 9536-9542. |
27. | 李峰, 蔡光先. 脑缺血后神经再生及其治疗的研究进展. 中华中医药杂志, 2016, 2(31): 578-581. |
28. | Pluchino S, Zanotti L, Rossi B, et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature, 2005, 436(748): 266-271. |
29. | Bond AM, Ming GL, Song H. Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell. 2015, 17(4): 385-395. |
30. | Lee HJ, Kim MK, Kim HJ, et al. Human neural stem cells genetically modified to overexpress Akt1 provide neuroprotection and functional improvement in mouse stroke model. PLoS One, 2009, 4(5): e5586. |
31. | Liu YP, Seçkin H, Izci Y, et al. Neuroprotective effects of mesenchymal stem cells derived from human embryonic stem cells in transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab, 2009, 29(4): 780-791. |
32. | Bellenchi GC, Volpicelli F, Piscopo V, et al. Adult neural stem cells: an endogenous tool to repair brain injury. J Neurochem, 2013, 124(2): 159-167. |
33. | Ninkovic J, Götz M. Signaling in adult neurogenesis: from stem cell niche to neuronal networks. Curr Opin Neurobiol, 2007, 17(3): 338-344. |
34. | Bao H, Asrican B, Li W, et al. Long-range GABAergic inputs regulate neural stem cell quiescence and control adult hippocampal neurogenesis. Cell Stem Cell, 2017, 21(5): 604-617. |
35. | Castañeda MM, Cubilla MA, Bachor T, et al. Endothelinergic signaling during recovery of brain cortical lesions. Neurol Res, 2011, 33(2): 137-144. |
36. | Ma DK, Ming GL, Song H. Glial influences on neural stem cell development: cellular niches for adult neurogenesis. Curr Opin Neurobiol, 2005, 15(5): 514-520. |
37. | 高俊玮, 马浚宁, 候博儒, 等. 炎性细胞因子对神经干细胞增殖与分化的调节. 中华神经外科疾病研究杂志, 2015, 2(14): 190-192. |
38. | Jiao J, Chen DF. Induction of neurogenesis in nonconventional neurogenic regions of the adult central nervous system by niche astrocyte-produced signals. Stem Cells, 2008, 26(5): 1221-1230. |
39. | Duan X, Kang E, Liu CY, et al. Development of neural stem cell in the adult brain. Curr Opin Neurobiol, 2008, 18(1): 108-115. |
40. | Ahn S, Joyner AL. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature, 2005, 437(760): 894-897. |
41. | Bauer S, Patterson PH. Leukemia inhibitory factor promotes neural stem cell self-renewal in the adult brain. J Neurosci, 2006, 26(46): 12089-12099. |
42. | 肖霁函, 王珊珊, 周琳. 一些细胞因子对哺乳动物神经干细胞增殖分化的影响. 中国细胞生物学学报, 2016, 7(38): 886-896. |
43. | Qin W, Li Z, Luo S, et al. Exogenous fractalkine enhances proliferation of endothelial cells, promotes migration of endothelial progenitor cells and improves neurological deficits in a rat model of ischemic stroke. Neurosci Lett, 2014, 569: 80-84. |
44. | Jafarzadeh N, Javeri A, Khaleghi M, et al. Oxytocin improves proliferation and neural differentiation of adipose tissue-derived stem cells. Neurosci Lett, 2014, 564: 105-110. |
45. | Lie DC, Colamarino SA, Song HJ, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature, 2005, 437(763): 1370-1375. |
46. | Androutsellis-Theotokis A, Leker RR, Soldner F, et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature, 2006, 442(714): 823-826. |
47. | Oliveira SL, Pillat MM, Cheffer A, et al. Functions of neurotrophins and growth factors in neurogenesis and brain repair. Cytometry A, 2013, 83(1): 76-89. |
48. | Addington CP, Pauken CM, Caplan MR, et al. The role of SDF-1α-ECM crosstalk in determining neural stem cell fate. Biomaterials, 2014, 35(10): 3263-3272. |
49. | Qiu C, De Ronchi D, Fratiglioni L. The epidemiology of the dementias: an update. Curr Opin Psychiatry, 2007, 20(4): 380-385. |
50. | 梁汉周, 梁雁, 黄波. 老年痴呆病的发病机制及临床药物治疗分. 当代医学, 2013, 19(22): 150-151. |
51. | Goldstein LS. Axonal transport and neurodegenerative disease: can we see the elephant?. Prog Neurobiol, 2012, 99(3): 186-190. |
52. | 米亚静, 刘洁, 王世伟, 等. DNA 双加氧酶 TET2 在老年痴呆动物模型脑组织中的表达及其对氧化应激中神经元的保护作用. 吉林大学学报: 医学版, 2015, 41(4): 727-731. |
53. | Speziali M, Di Casa M, Orvini E. Determination of Aluminum by neutron activation analysis in human lung tissue and in chemicals for dialysis of uremic patients. Biol Trace Elem Res, 2013, 17(4): 271-284. |
54. | Plowey ED, Ziskin JL. Hippocampal phospho-tau/MAPT neuropathology in the fornix in Alzheimer disease: an immunohistochemical autopsy study. Acta Neuropathol Commun. 2016, 4(1): 114. |
55. | Herrmann N, Chau SA, Kircanski I, et al. Current and emerging drug treatment options for Alzheimer's disease: a systematic review. Drugs, 2011, 71(15): 2031-2065. |
56. | St George-Hyslop PH. Genetic factors in the Genesis of Alzheimer’s disease. Ann N Y Acad Sci, 2000, 924: 1-7. |
57. | Brunholz S, Sisodia S, Lorenzo A, et al. Axonal transport of APP and the spatial regulation of APP cleavage and function in neuronal cells. Exp Brain Res, 2012, 217(3/4): 353-364. |
58. | Cappell J, Herrmann N, Cornish S, et al. The pharmacoeconomics of cognitive enhancers in moderate to severe Alzheimer's disease. CNS Drugs, 2010, 24(11): 909-927. |
59. | Irwin RW, Brinton RD. Allopregnanolone as regenerative therapeutic for Alzheimer’s disease: translational development and clinical promise. Prog Neurobiol, 2014, 113(4): 40-55. |
60. | Chang KA, Kim JA, Kim S, et al. Therapeutic potentials of neural stem cells treated with fluoxetine in Alzheimer’s disease. Neurochem Int, 2012, 61(6): 885-891. |
61. | Chen WW, Blurton-Jones M. Concise review: can stem cells be used to treat or model Alzheimer’s disease?. Stem Cells, 2012, 30(12): 2612-2618. |
62. | Hampton DW, Webber DJ, Bilican B, et al. Cell-mediated neuroprotection in a mouse model of human tauopathy. J Neurosci, 2010, 30(30): 9973-9983. |
63. | Savitt JM, Dawson VL, Dawson TM. Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest, 2006, 116(7): 1744-1754. |
64. | 丁晖, 吴晓莉, 张开元, 等. 帕金森病患者嗅觉障碍与嗅觉相关脑区结构变化关系的研究. 中国现代神经疾病杂志, 2011, 11(1): 54-59. |
65. | Korecka JA, Verhaagen J, Hol EM. Cell-replacement and gene-therapy strategies for Parkinson’s and Alzheimer’s disease. Regen Med, 2007, 2(4): 425-446. |
66. | Benabid AL, Chabardes S, Mitrofanis JA. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol, 2009, 8(1): 67-81. |
67. | Bjorklund T, Kordower JH. Gene therapy for Parkinson’s disease. Mov Disord, 2010, 25(Suppl 1): S161-S173. |
68. | Barker RA, Barrett J, Mason SL, et al. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol, 2013, 12(1): 84-91. |
69. | Lindvall O, Kokaia Z. Stem cells in human neurodegenerative disorders--time for clinical translation?. J Clin Invest, 2010, 120(1): 29-40. |
70. | van den Berge SA. Van strien ME, Hol EM. Resident adult neural stem cells in Parkinson’s disease--the brain’s own repair system. Eur J Pharmacol, 2013, 19(13): 117-127. |
71. | Hsieh WT, Chiang BH. A well-refined in vitro model derived from human embryonic stem cell for screening phytochemicals with midbrain dopaminergic differentiation-boosting potential for improving Parkinson’s disease. J Agric Food Chem, 2014, 62(27): 6326-6336. |
72. | Liu J, Zang D. Response of neural precursor cells in the brain of Parkinson’s disease mouse model after LIF administration. Neurol Res, 2009, 31(7): 681-686. |
73. | Su C, Wang P, Jiang C, et al. Guanosine promotes proliferation of neural stem cells through cAMP-CREB pathway. J Biol Regul Homeost Agents, 2013, 27(3): 673-680. |
74. | Episcopo FL, Tirolo C, Testa N, et al. Reactive astrocytes are key players in nigrostriatal dopaminergic neurorepair in the MPTP mouse model of Parkinson’s disease: focus on endogenous neurorestoration. Curr Aging Sci, 2013, 6(1): 45-55. |
75. | Tan X, Zhang L, Zhu H, et al. Brn4 and TH synergistically promote the differentiation of neural stem cells into dopaminergic neurons. Neurosci Lett, 2014, 571: 23-28. |
76. | 曾维军, 周文胜, 王佳. 神经营养因子和生长因子在神经干细胞中的研究进展. 临床与病理杂志, 2015, 3(35): 484-489. |
77. | 李智高, 徐蛟天, 陈孝祥, 等. 神经干细胞和多巴胺神经元联合移植对帕金森病大鼠运动障碍的影响. 山东医药, 2017, 20(57): 24-27. |
78. | Turnley AM, Basrai HS, Christie KJ. Is integration and survival of newborn neurons the bottleneck for effective neural repair by endogenous neural precursor cells?. Front Neurosci, 2014, 8: 29. |
79. | 刘明兴, 王永楠, 夏磊, 等. 纳米药物载体靶向治疗脑胶质瘤的现状及前景展望. 现代生物医学进展, 2015, 33(15): 6575-6579. |
- 1. Ramon Y, Cajal S. Degeneration and regeneration of the nervous system. May RM, Trans. New York: Oxford University Press, 1928.
- 2. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol, 1965, 124(3): 319-335.
- 3. Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J Neurosci, 2002, 22(3): 629-634.
- 4. Gage FH. Mammalian neural stem cells. Science, 2000, 287(5457): 1433-1438.
- 5. Kempermann G, Gage FH. Neurogenesis in the adult hippocampus. Novartis Found Symp, 2000, 231: 220-235.
- 6. Williams A. Central nervous system regeneration--where are we? QJM, 2014, 107(5): 335-339.
- 7. Curtis MA, Kam M, Nannmark U, et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science, 2007, 315(5816): 1243-1249.
- 8. Kornack DR, Rakic P. Cell proliferation without neurogenesis in adult primate neocortex. Science, 2001, 294(5549): 2127-2130.
- 9. Kriegstein A, Alvarez-Buylla A. The glial Nature of embryonic and adult neural stem cells. Annu Rev Neurosci, 2009, 32: 149-184.
- 10. Doetsch F, García-Verdugo JM, Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci, 1997, 17(13): 5046-5061.
- 11. Sanai N, Tramontin AD, Quiñones-Hinojosa A, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature, 2004, 427(6976): 740-744.
- 12. Quiñones-Hinojosa A, Sanai N, Soriano-Navarro M, et al. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol, 2006, 494(3): 415-434.
- 13. Roelofs RF, Fischer DF, Houtman SH, et al. Adult human subventricular, subgranular, and subpial zones contain astrocytes with a specialized intermediate filament cytoskeleton. Glia, 2005, 52(4): 289-300.
- 14. Kam M, Curtis MA, Mcglashan SR, et al. The cellular composition and morphological organization of the rostral migratory stream in the adult human brain. J Chem Neuroanat, 2009, 37(3): 196-205.
- 15. Wang C, Liu F, Liu YY, et al. Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res, 2011, 21(11): 1534-1550.
- 16. vanstrien ME, vandenberge SA, Hol EM, et al. Migrating neuroblasts in the adult human brain: a stream reduced to atrickle. Cell Res, 2011, 21(11): 1523-1525.
- 17. van den Berge SA, van Strien ME, Korecka JA, et al. The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain. Brain, 2011, 134(Pt 11): 3249-3263.
- 18. Sanai N, Nguyen T, Ihrie RA, et al. Corridors of migrating neurons in the human brain and their decline during infancy. Nature, 2011, 478(7369): 382-386.
- 19. Persson A, Lindwall C, Curtis MA, et al. Expression of ezrin radixin moesin proteins in the adult subventricular zone and the rostral migratory stream. Neuroscience, 2010, 167(2): 312-322.
- 20. Costa MR, Götz M, Berninger B. What determines neurogenic competence in glia? Brain Res Rev, 2010, 63(1/2): 47-59.
- 21. Robel S, Berninger B, Götz M. The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci, 2011, 12(2): 88-104.
- 22. Buffo A, Rite I, Tripathi P, et al. Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc Natl Acad Sci USA, 2008, 105(9): 3581-3586.
- 23. Kamphuis W, Orre M, Kooijman L, et al. Differential cell proliferation in the cortex of the APPswePS1dE9 Alzheimer’s disease mouse model. Glia, 2012, 60(4): 615-629.
- 24. Wang S, Okun MS, Suslov O, et al. Neurogenic potential of progenitor cells isolated from postmortem human Parkinsonian brains. Brain Res, 2012, 1464: 61-72.
- 25. Pérez-Martín M, Cifuentes M, Grondona JM, et al. IGF-I stimulates neurogenesis in the hypothalamus of adult rats. Eur J Neurosci, 2010, 31(9): 1533-1548.
- 26. Zhang J, Lv XJ, Jia X, et al. Labeling primary nerve stem cells with quantum dots. J Nanosci Nanotechnol, 2011, 11(11): 9536-9542.
- 27. 李峰, 蔡光先. 脑缺血后神经再生及其治疗的研究进展. 中华中医药杂志, 2016, 2(31): 578-581.
- 28. Pluchino S, Zanotti L, Rossi B, et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature, 2005, 436(748): 266-271.
- 29. Bond AM, Ming GL, Song H. Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell. 2015, 17(4): 385-395.
- 30. Lee HJ, Kim MK, Kim HJ, et al. Human neural stem cells genetically modified to overexpress Akt1 provide neuroprotection and functional improvement in mouse stroke model. PLoS One, 2009, 4(5): e5586.
- 31. Liu YP, Seçkin H, Izci Y, et al. Neuroprotective effects of mesenchymal stem cells derived from human embryonic stem cells in transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab, 2009, 29(4): 780-791.
- 32. Bellenchi GC, Volpicelli F, Piscopo V, et al. Adult neural stem cells: an endogenous tool to repair brain injury. J Neurochem, 2013, 124(2): 159-167.
- 33. Ninkovic J, Götz M. Signaling in adult neurogenesis: from stem cell niche to neuronal networks. Curr Opin Neurobiol, 2007, 17(3): 338-344.
- 34. Bao H, Asrican B, Li W, et al. Long-range GABAergic inputs regulate neural stem cell quiescence and control adult hippocampal neurogenesis. Cell Stem Cell, 2017, 21(5): 604-617.
- 35. Castañeda MM, Cubilla MA, Bachor T, et al. Endothelinergic signaling during recovery of brain cortical lesions. Neurol Res, 2011, 33(2): 137-144.
- 36. Ma DK, Ming GL, Song H. Glial influences on neural stem cell development: cellular niches for adult neurogenesis. Curr Opin Neurobiol, 2005, 15(5): 514-520.
- 37. 高俊玮, 马浚宁, 候博儒, 等. 炎性细胞因子对神经干细胞增殖与分化的调节. 中华神经外科疾病研究杂志, 2015, 2(14): 190-192.
- 38. Jiao J, Chen DF. Induction of neurogenesis in nonconventional neurogenic regions of the adult central nervous system by niche astrocyte-produced signals. Stem Cells, 2008, 26(5): 1221-1230.
- 39. Duan X, Kang E, Liu CY, et al. Development of neural stem cell in the adult brain. Curr Opin Neurobiol, 2008, 18(1): 108-115.
- 40. Ahn S, Joyner AL. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature, 2005, 437(760): 894-897.
- 41. Bauer S, Patterson PH. Leukemia inhibitory factor promotes neural stem cell self-renewal in the adult brain. J Neurosci, 2006, 26(46): 12089-12099.
- 42. 肖霁函, 王珊珊, 周琳. 一些细胞因子对哺乳动物神经干细胞增殖分化的影响. 中国细胞生物学学报, 2016, 7(38): 886-896.
- 43. Qin W, Li Z, Luo S, et al. Exogenous fractalkine enhances proliferation of endothelial cells, promotes migration of endothelial progenitor cells and improves neurological deficits in a rat model of ischemic stroke. Neurosci Lett, 2014, 569: 80-84.
- 44. Jafarzadeh N, Javeri A, Khaleghi M, et al. Oxytocin improves proliferation and neural differentiation of adipose tissue-derived stem cells. Neurosci Lett, 2014, 564: 105-110.
- 45. Lie DC, Colamarino SA, Song HJ, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature, 2005, 437(763): 1370-1375.
- 46. Androutsellis-Theotokis A, Leker RR, Soldner F, et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature, 2006, 442(714): 823-826.
- 47. Oliveira SL, Pillat MM, Cheffer A, et al. Functions of neurotrophins and growth factors in neurogenesis and brain repair. Cytometry A, 2013, 83(1): 76-89.
- 48. Addington CP, Pauken CM, Caplan MR, et al. The role of SDF-1α-ECM crosstalk in determining neural stem cell fate. Biomaterials, 2014, 35(10): 3263-3272.
- 49. Qiu C, De Ronchi D, Fratiglioni L. The epidemiology of the dementias: an update. Curr Opin Psychiatry, 2007, 20(4): 380-385.
- 50. 梁汉周, 梁雁, 黄波. 老年痴呆病的发病机制及临床药物治疗分. 当代医学, 2013, 19(22): 150-151.
- 51. Goldstein LS. Axonal transport and neurodegenerative disease: can we see the elephant?. Prog Neurobiol, 2012, 99(3): 186-190.
- 52. 米亚静, 刘洁, 王世伟, 等. DNA 双加氧酶 TET2 在老年痴呆动物模型脑组织中的表达及其对氧化应激中神经元的保护作用. 吉林大学学报: 医学版, 2015, 41(4): 727-731.
- 53. Speziali M, Di Casa M, Orvini E. Determination of Aluminum by neutron activation analysis in human lung tissue and in chemicals for dialysis of uremic patients. Biol Trace Elem Res, 2013, 17(4): 271-284.
- 54. Plowey ED, Ziskin JL. Hippocampal phospho-tau/MAPT neuropathology in the fornix in Alzheimer disease: an immunohistochemical autopsy study. Acta Neuropathol Commun. 2016, 4(1): 114.
- 55. Herrmann N, Chau SA, Kircanski I, et al. Current and emerging drug treatment options for Alzheimer's disease: a systematic review. Drugs, 2011, 71(15): 2031-2065.
- 56. St George-Hyslop PH. Genetic factors in the Genesis of Alzheimer’s disease. Ann N Y Acad Sci, 2000, 924: 1-7.
- 57. Brunholz S, Sisodia S, Lorenzo A, et al. Axonal transport of APP and the spatial regulation of APP cleavage and function in neuronal cells. Exp Brain Res, 2012, 217(3/4): 353-364.
- 58. Cappell J, Herrmann N, Cornish S, et al. The pharmacoeconomics of cognitive enhancers in moderate to severe Alzheimer's disease. CNS Drugs, 2010, 24(11): 909-927.
- 59. Irwin RW, Brinton RD. Allopregnanolone as regenerative therapeutic for Alzheimer’s disease: translational development and clinical promise. Prog Neurobiol, 2014, 113(4): 40-55.
- 60. Chang KA, Kim JA, Kim S, et al. Therapeutic potentials of neural stem cells treated with fluoxetine in Alzheimer’s disease. Neurochem Int, 2012, 61(6): 885-891.
- 61. Chen WW, Blurton-Jones M. Concise review: can stem cells be used to treat or model Alzheimer’s disease?. Stem Cells, 2012, 30(12): 2612-2618.
- 62. Hampton DW, Webber DJ, Bilican B, et al. Cell-mediated neuroprotection in a mouse model of human tauopathy. J Neurosci, 2010, 30(30): 9973-9983.
- 63. Savitt JM, Dawson VL, Dawson TM. Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest, 2006, 116(7): 1744-1754.
- 64. 丁晖, 吴晓莉, 张开元, 等. 帕金森病患者嗅觉障碍与嗅觉相关脑区结构变化关系的研究. 中国现代神经疾病杂志, 2011, 11(1): 54-59.
- 65. Korecka JA, Verhaagen J, Hol EM. Cell-replacement and gene-therapy strategies for Parkinson’s and Alzheimer’s disease. Regen Med, 2007, 2(4): 425-446.
- 66. Benabid AL, Chabardes S, Mitrofanis JA. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol, 2009, 8(1): 67-81.
- 67. Bjorklund T, Kordower JH. Gene therapy for Parkinson’s disease. Mov Disord, 2010, 25(Suppl 1): S161-S173.
- 68. Barker RA, Barrett J, Mason SL, et al. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol, 2013, 12(1): 84-91.
- 69. Lindvall O, Kokaia Z. Stem cells in human neurodegenerative disorders--time for clinical translation?. J Clin Invest, 2010, 120(1): 29-40.
- 70. van den Berge SA. Van strien ME, Hol EM. Resident adult neural stem cells in Parkinson’s disease--the brain’s own repair system. Eur J Pharmacol, 2013, 19(13): 117-127.
- 71. Hsieh WT, Chiang BH. A well-refined in vitro model derived from human embryonic stem cell for screening phytochemicals with midbrain dopaminergic differentiation-boosting potential for improving Parkinson’s disease. J Agric Food Chem, 2014, 62(27): 6326-6336.
- 72. Liu J, Zang D. Response of neural precursor cells in the brain of Parkinson’s disease mouse model after LIF administration. Neurol Res, 2009, 31(7): 681-686.
- 73. Su C, Wang P, Jiang C, et al. Guanosine promotes proliferation of neural stem cells through cAMP-CREB pathway. J Biol Regul Homeost Agents, 2013, 27(3): 673-680.
- 74. Episcopo FL, Tirolo C, Testa N, et al. Reactive astrocytes are key players in nigrostriatal dopaminergic neurorepair in the MPTP mouse model of Parkinson’s disease: focus on endogenous neurorestoration. Curr Aging Sci, 2013, 6(1): 45-55.
- 75. Tan X, Zhang L, Zhu H, et al. Brn4 and TH synergistically promote the differentiation of neural stem cells into dopaminergic neurons. Neurosci Lett, 2014, 571: 23-28.
- 76. 曾维军, 周文胜, 王佳. 神经营养因子和生长因子在神经干细胞中的研究进展. 临床与病理杂志, 2015, 3(35): 484-489.
- 77. 李智高, 徐蛟天, 陈孝祥, 等. 神经干细胞和多巴胺神经元联合移植对帕金森病大鼠运动障碍的影响. 山东医药, 2017, 20(57): 24-27.
- 78. Turnley AM, Basrai HS, Christie KJ. Is integration and survival of newborn neurons the bottleneck for effective neural repair by endogenous neural precursor cells?. Front Neurosci, 2014, 8: 29.
- 79. 刘明兴, 王永楠, 夏磊, 等. 纳米药物载体靶向治疗脑胶质瘤的现状及前景展望. 现代生物医学进展, 2015, 33(15): 6575-6579.