1. |
Ott JJ, Stevens GA, Groeger J, et al. Global epidemiology of hepatitis B virus infection: New estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine, 2012, 30(12): 2212-2219.
|
2. |
WHO Guidelines Approved by the Guidelines Review Committee. Guidelines for the prevention, care and treatment of persons with chronic hepatitis B infection. 2015. https://www.ncbi.nlm.nih. gov/pubmed/26225396.
|
3. |
Pingoud A, Wilson GG, Wende W. Type II restriction endonucleases-a historical perspective and more. Nucleic Acids Res, 2014, 42(12): 7489-7527.
|
4. |
Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013, 31(7): 397-405.
|
5. |
Klug A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev biochem, 2010, 79: 213-231.
|
6. |
Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010, 186(2): 757-761.
|
7. |
Wasik BR, Turner PE. On the biological success of viruses. Annu Rev microbiol, 2013, 67: 519-541.
|
8. |
Grissa I, Vergnaud G, Pourcel C. Clustered regularly interspaced short palindromic repeats (CRISPRs) for the genotyping of bacterial pathogens//Molecular Epidemiology of Microorganisms. Humana Press, 2009: 105-116.
|
9. |
Swarts DC, Mosterd C, van Passel MW, et al. CRISPR interference directs strand specific spacer acquisition. PLoS One, 2012, 7(4): e35888.
|
10. |
Yosef I, Goren MG, Qimron U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res, 2012, 40(12): 5569-5576.
|
11. |
Nuñez JK, Kranzusch PJ, Noeske J, et al. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat Struct Mol Biol, 2014, 21(6): 528-534.
|
12. |
Nuñez JK, Lee AS, Engelman A, et al. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature, 2015, 519(7542): 193-198.
|
13. |
Barrangou R, Marraffini LA. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell, 2014, 54(2): 234-244.
|
14. |
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.
|
15. |
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157(6): 1262-1278.
|
16. |
Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol, 2013, 31(9): 827-832.
|
17. |
Mali P, Yang LH, Esvelt KM, et al. RNA-Guided human genome engineering via Cas9. Science, 2013, 339(6121): 823-826.
|
18. |
Garneau JE, Dupuis MÈ, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010, 468(7320): 67-71.
|
19. |
Gasiunas G, Barrangou R, Horvath PA. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A, 2012, 109(39): E2579-E2586.
|
20. |
Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-Guided platform for Sequence-Specific control of gene expression. Cell, 2013, 152(5): 1173-1183.
|
21. |
Lin SR, Yang HC, Kuo YT, et al. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol Ther Nucleic Acids, 2014, 3: e186.
|
22. |
Kennedy EM, Bassit LC, Mueller HA, et al. Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology, 2015, 476: 196-205.
|
23. |
Liu X, Hao R, Chen S, et al. Inhibition of hepatitis B virus by the CRISPR/Cas9 system via targeting the conserved regions of the viral genome. J Gen Virol, 2015, 96(8): 2252-2261.
|
24. |
Zhen S, Hua L, Liu YH, et al. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther, 2015, 22(5): 404-412.
|
25. |
Dong C, Qu L, Wang H, et al. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antiviral Res, 2015, 118: 110-117.
|
26. |
Ramanan V, Shlomai A, Cox DB, et al. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci Rep, 2015, 5: 10833.
|
27. |
Karimova M, Beschorner N, Dammermann W, et al. CRISPR/Cas9 nickase-mediated disruption of hepatitis B virus open reading frame S and X. Sci Rep, 2015, 5: 13734.
|
28. |
Wang J, Xu ZW, Liu S, et al. Dual gRNAs guided CRISPR/Cas9 system inhibits hepatitis B virus replication. World J Gastroenterol, 2015, 21(32): 9554-9565.
|
29. |
Dejean A, Lugassy C, Zafrani S, et al. Detection of hepatitis B virus DNA in pancreas, kidney and skin of two human carriers of the virus. J Gen Virol, 1984, 65(Pt3): 651-655.
|
30. |
Mason A, Wick M, White H, et al. Hepatitis B virus replication in diverse cell types during chronic hepatitis B virus infection. Hepatology, 1993, 18(4): 781-789.
|
31. |
Pontisso P, Poon MC, Tiollais P, et al. Detection of hepatitis B virus DNA in mononuclear blood cells. Br Med J(Clin Res Ed), 1984, 288(6430): 1563-1566.
|
32. |
Ran FA, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature, 2015, 520(7546): 186-191.
|
33. |
Truong DJ, Küehner K, Küehn R, et al. Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res, 2015, 43(13): 6450-6458.
|
34. |
Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 2013, 31(9): 822-826.
|
35. |
Mali P, Aach J, Stranges PB, et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol, 2013, 31(9): 833-838.
|
36. |
Fu YF, Sander JD, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol, 2014, 32(3): 279-284.
|
37. |
Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokⅠ nuclease improves the specificity of genome modification. Nat Biotechnol, 2014, 32(6): 577-582.
|
38. |
Feitelson MA, Lee J. Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer Lett, 2007, 252(2): 157-170.
|