1. |
World Health Organization. 10 facts on obesity. (2017-10-31)[2018-04-15]. http://www.who.int/features/factfiles/obesity/en/index.html.
|
2. |
NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet, 2017, 390(10113): 2627-2642.
|
3. |
Silva JE. Thermogenic mechanisms and their hormonal regulation. Physiol Rev, 2006, 86(2): 435-464.
|
4. |
Rosenbaum M, Hirsch J, Murphy E, et al. Effects of changes in body weight on carbohydrate metabolism, catecholamine excretion, and thyroid function. Am J Clin Nutr, 2000, 71(6): 1421-1432.
|
5. |
al-Adsani H, Hoffer LJ, Silva JE. Resting energy expenditure is sensitive to small dose changes in patients on chronic thyroid hormone replacement. J Clin Endocrinol Metab, 1997, 82(4): 1118-1125.
|
6. |
Knudsen N, Laurberg P, Rasmussen LB, et al. Small differences in thyroid function may be important for body mass index and the occurrence of obesity in the population. J Clin Endocrinol Metab, 2005, 90(7): 4019-4024.
|
7. |
Marras V, Casini MR, Pilia S, et al. Thyroid function in obese children and adolescents. Horm Res Paediatr, 2010, 73(3): 193-197.
|
8. |
Reinehr T, de Sousa G, Andler W. Hyperthyrotropinemia in obese children is reversible after weight loss and is not related to lipids. J Clin Endocrinol Metab, 2006, 91(8): 3088-3091.
|
9. |
Dall’Asta C, Paganelli M, Morabito A, et al. Weight loss through gastric banding: effects on TSH and thyroid hormones in obese subjects with normal thyroid function. Obesity (Silver Spring), 2010, 18(4): 854-857.
|
10. |
Wang X, Liu H, Chen J, et al. Metabolic characteristics in obese patients complicated by mild thyroid hormone deficiency. Horm Metab Res, 2016, 48(5): 331-337.
|
11. |
Nannipieri M, Cecchetti F, Anselmino M, et al. Expression of thyrotropin and thyroid hormone receptors in adipose tissue of patient with morbid obesity and/or type 2 diabetes: effects of weight loss. Int J Obes (Lond), 2009, 33(9): 1001-1006.
|
12. |
Krude H, Biebermann H, Schnabel D, et al. Obesity due to proopiomelanocortin deficiency: three new cases and treatment trials with thyroid hormone and ACTH4-10. J Clin Endocrinol Metab, 2003, 88(10): 4633-4640.
|
13. |
Moon MK, Kang GH, Kim HH, et al. Thyroid-stimulating hormone improves insulin sensitivity in skeletal muscle cells via cAMP/PKA/CREB pathway-dependent upregulation of insulin receptor substrate-1 expression. Mol Cell Endocrinol, 2016, 436: 50-58.
|
14. |
Chen J, Ren J, Jing Q, et al. TSH/TSHR signaling suppresses fatty acid synthase (FASN) expression in adipocytes. J Cell Physiol, 2015, 230(9): 2233-2239.
|
15. |
Pinkney JH, Goodrick SJ, Katz JR, et al. Thyroid and sympathetic influences on plasma leptin in hypothyroidism and hyperthyroidism. Int J Obes Relat Metab Disord, 2000, 24(Suppl 2): S165-S166.
|
16. |
Aeberli I, Jung A, Murer SB, et al. During rapid weight loss in obese children, reductions in TSH predict improvements in insulin sensitivity independent of changes in body weight or fat. J Clin Endocrinol Metab, 2010, 95(12): 5412-5418.
|
17. |
Popovic V, Duntas LH. Brain somatic cross-talk: ghrelin, leptin and ultimate challengers of obesity. Nutr Neurosci, 2005, 8(1): 1-5.
|
18. |
Meister B. Control of food intake via leptin receptors in the hypothalamus. Vitam Horm, 2000, 59(59): 265-304.
|
19. |
Duntas LH, Biondi B. The interconnections between obesity, thyroid function, and autoimmunity: the multifold role of leptin. Thyroid, 2013, 23(6): 646-653.
|
20. |
Flier JS, Harris M, Hollenberg AN. Leptin, nutrition, and the thyroid: the why, the wherefore, and the wiring. J Clin Invest, 2000, 105(7): 859-861.
|
21. |
Ajjan RA, Watson PF, Findlay C, et al. The sodium iodide symporter gene and its regulation by cytokines found in autoimmunity. J Endocrinol, 1998, 158(3): 351-358.
|
22. |
Pekary AE, Hershman JM. Tumor necrosis factor, ceramide, transforming growth factor-beta1, and aging reduce Na+/I- symporter messenger ribonucleic acid levels in FRTL-5 cells. Endocrinology, 1998, 139(2): 703-712.
|
23. |
Pekary AE, Levin SR, Johnson DG, et al. Tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta 1 (TGF-beta 1) inhibit the expression and activity of Na+/K(+)-ATPase in FRTL-5 rat thyroid cells. J Interferon Cytokine Res, 1997, 17(4): 185-195.
|
24. |
Vagenakis AG, Portnay GI, O’brian JT, et al. Effect of starvation on the production and metabolism of thyroxine and triiodothyronine in euthyroid obese patients. J Clin Endocrinol Metab, 1977, 45(6): 1305-1309.
|
25. |
Eisenstein Z, Hagg S, Vagenakis AG, et al. Effect of starvation on the production and peripheral metabolism of 3, 3’, 5’-triiodothyronine in euthyroid obese subjects. J Clin Endocrinol Metab, 1978, 47(4): 889-893.
|
26. |
Hill JO, Sparling PB, Shields TW, et al. Effects of exercise and food restriction on body composition and metabolic rate in obese women. Am J Clin Nutr, 1987, 46(4): 622-630.
|
27. |
Spaulding SW, Chopra IJ, Sherwin RS, et al. Effect of caloric restriction and dietary composition of serum T3 and reverse T3 in man. J Clin Endocrinol Metab, 1976, 42(1): 197-200.
|
28. |
O’Brian JT, Bybee DE, Burman KD, et al. Thyroid hormone homeostasis in states of relative caloric deprivation. Metabolism, 1980, 29(8): 721-727.
|
29. |
Reinehr T, Isa A, de Sousa G, et al. Thyroid hormones and their relation to weight status. Horm Res, 2008, 70(1): 51-57.
|
30. |
Sari R, Balci MK, Altunbas H, et al. The effect of body weight and weight loss on thyroid volume and function in obese women. Clin Endocrinol (Oxf), 2003, 59(2): 258-262.
|
31. |
Sonka J, Marek J, Svacina S, et al. Somatometric and hormonal effects of dexfenfluramine. Sb Lek, 1995, 96(4): 299-301.
|
32. |
Lips MA, Pijl H, van Klinken JB, et al. Roux-en-Y gastric bypass and calorie restriction induce comparable time-dependent effects on thyroid hormone function tests in obese female subjects. Eur J Endocrinol, 2013, 169(3): 339-347.
|
33. |
Yang J, Gao Z, Yang W, et al. Effect of sleeve gastrectomy on thyroid function in Chinese euthyroid obese patients. Surg Laparosc Endosc Percutan Tech, 2017, 27(4): e66-e68.
|
34. |
Bookout AL, Jeong Y, Downes M, et al. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell, 2006, 126(4): 789-799.
|
35. |
Baxter JD, Webb P. Thyroid hormone mimetics: potential applications in atherosclerosis, obesity and type 2 diabetes. Nat Rev Drug Discov, 2009, 8(4): 308-320.
|
36. |
Pierpaoli W, Lesnikov VA. Effects of long-term intraperitoneal injection of thyrotropin-releasing hormone (TRH) on aging and obesity-related changes in body weight, lipid metabolism, and thyroid functions. Curr Aging Sci, 2011, 4(1): 25-32.
|
37. |
Villicev CM, Freitas FRS, Aoki MS, et al. Thyroid hormone receptor beta-specific agonist GC-1 increases energy expenditure and prevents fat-mass accumulation in rats. J Endocrinol, 2007, 193(1): 21-29.
|
38. |
Baxter JD, Webb P, Grover G, et al. Selective activation of thyroid hormone signaling pathways by GC-1: a new approach to controlling cholesterol and body weight. Trends Endocrinol Metab, 2004, 15(4): 154-157.
|