1. |
Lawrence DR, Palacios-Gonzalez C, Harris J. Artificial intelligence. Camb Q Healthc Ethics, 2016, 25(2): 250-261.
|
2. |
Miller DD, Brown EW. Artificial intelligence in medical practice: the question to the answer? Am J Med, 2018, 131(2): 129-133.
|
3. |
Esfandiari N, Babavalian MR, Moghadam A, et al. Knowledge discovery in medicine: current issue and future trend. Expert Syst Appl, 2014, 41(9): 4434-4463.
|
4. |
Das S, Chowdhury SR, Saha H. Accuracy enhancement in a fuzzy expert decision making system through appropriate determination of membership functions and its application in a medical diagnostic decision making system. J Med Syst, 2012, 36(3): 1607-1620.
|
5. |
Sotos JC. MYCIN and NEOMYCIN: two approaches to generating explanations in rule-based expert systems. Aviat Space Environ Med, 1990, 61(10): 950-954.
|
6. |
Goggin LS, Eikelboom RH, Atlas MD. Clinical decision support systems and computer-aided diagnosis in otology. Otolaryngol Head Neck Surg, 2007, 136(4 Suppl): S21-S26.
|
7. |
Gavilan C, Gallego J, Gavilan J. ‘Carrusel’: an expert system for vestibular diagnosis. Acta Otolaryngol, 1990, 110(3/4): 161-167.
|
8. |
Dong CL, Wang YJ, Zhang Q, et al. The methodology of Dynamic Uncertain Causality Graph for intelligent diagnosis of vertigo. Comput Methods Programs Biomed, 2014, 113(1): 162-174.
|
9. |
马逸, 陈斌. 专家系统在医学上的研究现状及进展. 中国医疗设备, 2008(6): 42-44, 78.
|
10. |
宗相卿, 代林田. 微机应用关幼波肝病诊疗程序 196 例分析. 辽宁中医杂志, 1992(6): 26-27.
|
11. |
易涛, 魏蛟龙. 心血管药物治疗专家系统的设计. 中国药房, 2003(7): 22-23.
|
12. |
卢培佩. 计算机辅助职业病诊断专家系统的研究. 长沙: 中南大学, 2011.
|
13. |
王心涛, 齐效君, 方向明, 等. 中枢神经系统 CT 影像诊断专家系统的设计与实现. 中国医学创新, 2014(34): 12-15.
|
14. |
Salas-Gonzalez D, Gorriz JM, Ramirez J, et al. Computer-aided diagnosis of Alzheimer’s disease using support vector machines and classification trees. Phys Med Biol, 2010, 55(10): 2807-2817.
|
15. |
Chen X, Wang ZJ, Sy C, et al. Computer-aided diagnosis expert system for cerebrovascular diseases. Neurol Res, 2014, 36(5, SI): 468-474.
|
16. |
Kentala EL, Laurikkala JP, Viikki K, et al. Experiences of otoneurological expert system for vertigo. Scand Audiol Suppl, 2001(52): 90-91.
|
17. |
Heckerman DE, Nathwani BN. Toward normative expert systems: Part Ⅱ. Probability-based representations for efficient knowledge acquisition and inference. Methods Inf Med, 1992, 31(2): 106-116.
|
18. |
Oropesa I, Sanchez-Gonzalez P, Chmarra MK, et al. Supervised classification of psychomotor competence in minimally invasive surgery based on instruments motion analysis. Surg Endosc, 2014, 28(2): 657-670.
|
19. |
Lin RH, Chuang CL. A hybrid diagnosis model for determining the types of the liver disease. Comput Biol Med, 2010, 40(7): 665-670.
|
20. |
Chuang CL. Case-based reasoning support for liver disease diagnosis. Artif Intell Med, 2011, 53(1): 15-23.
|
21. |
Sterling M, Huang DT, Ghoraani B. Developing a new computer-aided clinical decision support system for prediction of successful postcardioversion patients with persistent atrial fibrillation. Comput Math Methods Med, 2015: 527815.
|
22. |
刘光熠, 赵迎宾, Ellenius J, 等. 一种灵活的基于临床指南的临床决策支持系统. 计算机应用与软件, 2011, 28(6): 189-191, 238.
|
23. |
杜敏, 罗建伟. 基于大数据的医院决策支持系统构建研究. 中国数字医学, 2014(12): 73-75.
|
24. |
倪家远, 汤亚玲. 基于决策树和面向对象技术的糖尿病诊断专家系统设计. 苏州科技学院学报: 自然科学版, 2016(1): 70-74.
|
25. |
赵凌云. 面向服务的消费者行为分析及推荐模型研究. 济南: 山东师范大学, 2014.
|
26. |
Sidky H, Whitmer JK. Learning free energy landscapes using artificial neural networks. J Chem Phys, 2018, 148(10): 104111.
|
27. |
Fabris F, Doherty A, Palmer D, et al. A new approach for interpreting random forest models and its application to the biology of ageing. Bioinformatics, 2018. doi: 10.1093/bioinformatics/bty087.
|
28. |
Korhani Kangi A, Bahrampour A. Predicting the survival of gastric cancer patients using artificial and bayesian neural networks. Asian Pac J Cancer Prev, 2018, 19(2): 487-490.
|
29. |
Burke HB, Goodman PH, Rosen DB, et al. Artificial neural networks improve the accuracy of cancer survival prediction. Cancer, 1997, 79(4): 857-862.
|
30. |
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017, 542(7639): 115.
|
31. |
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 2016, 316(22): 2402-2410.
|
32. |
Acharya RU, Yu WW, Zhu KY, et al. Identification of cataract and post-cataract surgery optical images using artificial intelligence techniques. J Med Syst, 2010, 34(4): 619-628.
|
33. |
Sharma G, Friedenberg DA, Annetta NA, et al. Using an artificial neural bypass to restore cortical control of rhythmic movements in a human with quadriplegia. Sci Rep, 2016, 6: 33807.
|
34. |
Bouton CE, Shaikhouni A, Annetta NV, et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature, 2016, 533(762): 247-250.
|
35. |
Krittanawong C, Zhang HJ, Wang Z, et al. Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol, 2017, 69(21): 2657-2664.
|
36. |
Bzdok D, Meyer-Lindenberg A. Machine learning for precision psychiatry: opportunities and challenges. Biol Psychiatry Cogn Neurosci Neuroimaging, 2018, 3(3): 223-230.
|
37. |
Abedi V, Goyal N, Tsivgoulis GA, et al. Novel screening tool for stroke using artificial neural network. Stroke, 2017, 48(6): 1678-1681.
|
38. |
Hazlett HC, Gu H, Munsell BC, et al. Early brain development in infants at high risk for autism spectrum disorder. Nature, 2017, 542(7641): 348-351.
|
39. |
Khazaee A, Ebrahimzadeh A, Babajani-Feremi A. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease. Brain Imaging Behav, 2016, 10(3): 799-817.
|
40. |
Edwards DF, Hollingsworth H, Zazulia AR, et al. Artificial neural networks improve the prediction of mortality in intracerebral hemorrhage. Neurology, 1999, 53(2): 351-357.
|
41. |
Huertas-Fernandez I, Garcia-Gomez FJ, Garcia-Solis D, et al. Machine learning models for the differential diagnosis of vascular parkinsonism and Parkinson’s disease using [(123)I]FP-CIT SPECT. Eur J Nucl Med Mol Imaging, 2015, 42(1): 112-119.
|
42. |
Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol, 2017, 2(4): 230-243.
|
43. |
Jha S, Topol EJ. Adapting to artificial intelligence radiologists and pathologists as information specialists. JAMA, 2016, 316(22): 2353-2354.
|
44. |
Lee CS, Nagy PG, Weaver SJ, et al. Cognitive and system factors contributing to diagnostic errors in radiology. AJR Am J Roentgenol, 2013, 201(3): 611-617.
|