1. |
Lafrance JP, Miller DR. Acute kidney injury associates with increased long-term mortality. J Am Soc Nephrol, 2010, 21(2): 345-352.
|
2. |
Lameire N, Van Biesen W, Vanholder R. The changing epidemiology of acute renal failure. Nat Clin Pract Nephrol, 2006, 2(7): 364-377.
|
3. |
Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest, 2011, 121(11): 4210-4221.
|
4. |
Chawla LS. Acute kidney injury leading to chronic kidney disease and long-term outcomes of acute kidney injury: the best opportunity to mitigate acute kidney injury?. Contrib Nephrol, 2011, 174: 182-190.
|
5. |
Humphreys BD, Valerius MT, Kobayashi A, et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell, 2008, 2(3): 284-291.
|
6. |
Humphreys BD, Czerniak S, DiRocco DP, et al. Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci USA, 2011, 108(22): 9226-9231.
|
7. |
Wen X, Murugan R, Peng Z, et al. Pathophysiology of acute kidney injury: a new perspective. Contrib Nephrol, 2010, 165: 39-45.
|
8. |
Bonventre JV. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol, 2003(Suppl 1): S55-S61.
|
9. |
He S, Liu N, Bayliss G, et al. EGFR activity is required for renal tubular cell dedifferentiation and proliferation in a murine model of folic acid-induced acute kidney injury. Am J Physiol Renal Physiol, 2013, 304(4): F356-F366.
|
10. |
Wallin A, Zhang G, Jones TW, et al. Mechanism of the nephrogenic repair response. Studies on proliferation and vimentin expression after 35S-1, 2-dichlorovinyl-L-cysteine nephrotoxicity in vivo and in cultured proximal tubule epithelial cells. Lab Invest, 1992, 66(4): 474-484.
|
11. |
Tang JH, Yan YL, Zhao TC, et al. Class I HDAC activity is required for renal protection and regeneration after acute kidney injury. Am J Physiol Renal Physiol, 2014, 307(3): F303-F316.
|
12. |
Tang J, Shi Y, Liu N, et al. Blockade of histone deacetylase 6 protects against cisplatin-induced acute kidney injury. Clin Sci (Lond), 2018, 132(3): 339-359.
|
13. |
Shi Y, Xu L, Tang J, et al. Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury. Am J Physiol Renal Physiol, 2017, 312(3): F502-F515.
|
14. |
Fontecha-Barriuso M, Martin-Sanchez D, Ruiz-Andres O, et al. Targeting epigenetic DNA and histone modifications to treat kidney disease. Nephrol Dial Transplant, 2018. doi: 10.1093/ndt/gfy009.
|
15. |
Zhang H, Zhang W, Jiao F, et al. The nephroprotective effect of MS-275 on lipopolysaccharide (LPS)-induced acute kidney injury by inhibiting reactive oxygen species (ROS)-oxidative stress and endoplasmic reticulum stress. Med Sci Monit, 2018, 24: 2620-2630.
|
16. |
Tang J, Zhuang S. Upregulation of AMWAP: a novel mechanism for HDAC inhibitors to protect against cisplatin nephrotoxicity. Kidney Int, 2016, 89(2): 267-269.
|
17. |
Ranganathan P, Hamad R, Mohamed R, et al. Histone deacetylase-mediated silencing of AMWAP expression contributes to cisplatin nephrotoxicity. Kidney Int, 2016, 89(2): 317-326.
|
18. |
Novitskaya T, McDermott L, Zhang KX, et al. A PTBA small molecule enhances recovery and reduces postinjury fibrosis after aristolochic acid-induced kidney injury. Am J Physiol Renal Physiol, 2014, 306(5): 496-504.
|
19. |
Feng Y, Huang R, Guo F, et al. Selective histone deacetylase 6 inhibitor 23BB alleviated rhabdomyolysis-induced acute kidney injury by regulating endoplasmic reticulum stress and apoptosis. Front Pharmacol, 2018, 9: 274.
|
20. |
Marumo T, Hishikawa K, Yoshikawa M, et al. Epigenetic regulation of BMP7 in the regenerative response to ischemia. J Am Soc Nephrol, 2008, 19(7): 1311-1320.
|
21. |
Villanueva S, Céspedes C, Vio CP. Ischemic acute renal failure induces the expression of a wide range of nephrogenic proteins. Am J Physiol Regul Integr Comp Physiol, 2006, 290(4): R861-R870.
|
22. |
Xu S, Gao Y, Zhang Q, et al. SIRT1/3 activation by resveratrol attenuates acute kidney injury in a septic rat model. Oxid Med Cell, 2016: 7296092.
|
23. |
Erkasap S, Erkasap N, Bradford B, et al. The effect of leptin and resveratrol on JAK/STAT pathways and Sirt-1 gene expression in the renal tissue of ischemia/reperfusion induced rats. Bratisl Lek Listy, 2017, 118(8): 443-448.
|
24. |
Pratt JR, Parker MD, Affleck LJ, et al. Ischemic epigenetics and the transplanted kidney. Transplant Proc, 2006, 38(10): 3344-3346.
|
25. |
Mehta TK, Hoque MO, Ugarte R, et al. Quantitative detection of promoter hypermethylation as a biomarker of acute kidney injury during transplantation. Transplant Proc, 2006, 38(10): 3420-3426.
|
26. |
Endo K, Kito N, Fukushima Y, et al. A novel biomarker for acute kidney injury using TaqMan-based unmethylated DNA-specific polymerase chain reaction. Biomed Res, 2014, 35(3): 207-213.
|
27. |
Kang SW, Shih PA, Mathew RO, et al. Renal kallikrein excretion and epigenetics in human acute kidney injury: expression, mechanisms and Consequences. BMC, Nephrol, 2011, 12: 27.
|
28. |
Huang N, Tan L, Xue Z, et al. Reduction of DNA hydroxymethylation in the mouse kidney insulted by ischemia reperfusion. Biochem Biophys Res Commun, 2012, 422(4): 697-702.
|
29. |
Guo C, Pei L, Xiao X, et al. DNA methylation protects against cisplatin-induced kidney injury by regulating specific genes, including interferon regulatory factor 8. Kidney Int, 2017, 92(5): 1194-1205.
|
30. |
Nguyen AT, Zhang Y. The diverse functions of Dot1 and H3K79 methylation. Genes Dev, 2011, 25(13): 1345-1358.
|
31. |
Nelson JD, Denisenko O, Sova P, et al. Fast chromatin immunoprecipitation assay. Nucleic Acids Res, 2006, 34(1): e2.
|
32. |
Johnson AC, Ware LB, Himmelfarb J, et al. HMG-CoA reductase activation and urinary pellet cholesterol elevations in acute kidney injury. Clin J Am Soc Nephrol, 2011, 6(9): 2108-2113.
|
33. |
Naito M, Bomsztyk K, Zager RA. Endotoxin mediates recruitment of RNA polymeraseⅡto target genes in acute renal failure. J Am Soc Nephrol, 2008, 19(7): 1321-1330.
|
34. |
Parker MD, Chambers PA, Lodge JP, et al. Ischemia- reperfusion injury and its influence on the epigenetic modification of the donor kidney genome. Transplantation, 2008, 86(12): 1818-1823.
|
35. |
Zhou X, Zang X, Ponnusamy M, et al. Enhancer of zeste homolog 2 inhibition attenuates renal fibrosis by maintaining Smad7 and phosphatase and tensin homolog expression. J Am Soc Nephrol, 2016, 27(7): 2092-2108.
|
36. |
Whyte WA, Bilodeau S, Orlando DA, et al. Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature, 2012, 482(7384): 221-225.
|
37. |
Shen Q, Jin H, Wang X. Epidermal stem cells and their epigenetic regulation. Int J Mol Sci, 2013, 14(9): 17861-17880.
|
38. |
He Y, Yu H, Sun S, et al. Trans-2-phenylcyclopropylamine regulates zebrafish lateral line neuromast development mediated by depression of LSD1 activity. Int J Dev Biol, 2013, 57(5): 365-373.
|
39. |
Irifuku T, DoiS, Sasaki K, et al. Inhibition of H3K9 histone methyltransferase G9a attenuates renal fibrosis and retains klotho expression. Kidney Int, 2016, 89(1): 147-157.
|
40. |
Li LX, Fan LX, Zhou JX, et al. Lysine methyltransferase SMYD2 promotes cyst growth in autosomal dominant polycystic kidney disease. J Clin Invest, 2017, 127(7): 2751-2764.
|
41. |
Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet, 2011, 12(2): 99-110.
|
42. |
Wei Q, Bhatt K, He HZ, et al. Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury. J Am Soc Nephrol, 2010, 21(5): 756-761.
|
43. |
Cantaluppi V, Gatti S, Medica D, et al. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int, 2012, 82(4): 412-427.
|
44. |
Lorenzen JM, Kaucsar T, Schauerte C, et al. MicroRNA-24 antagonism prevents renal ischemia reperfusion injury. J Am Soc Nephrol, 2014, 25(12): 2717-2729.
|
45. |
Lan YF, Chen HH, Lai PF, et al. MicroRNA-494 reduces ATF3 expression and promotes AKI. J Am Soc Nephrol, 2012, 23(12): 2012-2023.
|
46. |
Godwin JG, Ge XP, Stephan K, et al. Identification of a microRNA signature of renal ischemia reperfusion injury. Proc Natl Acad Sci USA, 2010, 107(32): 14339-14344.
|
47. |
Aguado-Fraile E, Ramos E, Sáenz-Morales D, et al. miR-127 protects proximal tubule cells against ischemia/reperfusion: identification of kinesin family member 3B as miR-127 target. PLoS One, 2012, 7(9): e44305.
|
48. |
Bhatt K, Wei Q, Pabla N, et al. MicroRNA-687 induced by hypoxia-inducible factor-1 targets phosphatase and tensin homolog in renal ischemia-reperfusion injury. J Am Soc Nephrol, 2015, 26(7): 1588-1596.
|
49. |
Rossetto D, Avvakumov N, Côté J. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics, 2012, 7(10): 1098-1108.
|
50. |
Metzger E, Imhof A, Patel D, et al. Phosphorylation of histone H3T6 by PKCbeta(Ⅰ) controls demethylation at histone H3K4. Nature, 2010, 464(7289): 792-796.
|
51. |
Guo C, Wei Q, Su Y, et al. SUMOylation occurs in acute kidney injury and plays a cytoprotective role. Biochim Biophys Acta, 2015, 1852(3): 482-489.
|
52. |
Ruiz-Andres O, Sanchez-Niño MD, Cannata-Ortiz P, et al. Histone lysine crotonylation during acute kidney injury in mice. Dis Model Mech, 2016, 9(6): 633-645.
|
53. |
Sabari BR, Tang Z, Huang H, et al. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol Cell, 2015, 58(2): 203-215.
|
54. |
Sanz AB, Izquierdo MC, Sanchez-Niño MD, et al. TWEAK and the progression of renal disease: clinical translation. Nephrol Dial Transplant, 2014, 29(Suppl 1): i54-i62.
|
55. |
Martins-Marques T, Ribeiro-Rodrigues T, Pereira P, et al. Autophagy and ubiquitination in cardiovascular diseases. DNA Cell Biol, 2015, 34(4): 243-251.
|
56. |
Varol B, Coşkun Ö, Karabulut S, et al. Clinical significance of serum ADP-ribosylation and NAD glycohydrolase activity in patients with colorectal cancer. Tumour Biol, 2014, 35(6): 5575-5582.
|
57. |
Ravidà A, Musante L, Kreivi M, et al. Glycosylation patterns of kidney proteins differ in rat diabetic nephropathy. Kidney Int, 2015, 87(5): 963-974.
|