1. |
World Health Organization. Global tuberculosis report 2017: WHO/HTM/TB/2017.23. Geneva: World Health Organization, 2017. http://www.who.int/tb/publications/global_report/en/.
|
2. |
Deo RC. Machine learning in medicine. Circulation, 2015, 132(20): 1920-1930.
|
3. |
Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504-507.
|
4. |
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-444.
|
5. |
Agranoff D, Fernandez-Reyes D, Papadopoulos MC, et al. Identification of diagnostic marers for tuberculosis by proteomic fingerprinting of serum. Lancet, 2006, 368(9540): 1012-1021.
|
6. |
《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会基础学组和临床学组. 现阶段结核抗体检测在我国临床应用的专家共识. 中国防痨杂志, 2018, 40(1): 9-13.
|
7. |
全国第五次结核病抽样调查技术指导组. 2010 年全国第五次结核病流行病学抽样调查报告. 中国防痨杂志, 2012, 34(8): 485-508.
|
8. |
Wilkinson RJ, Rohlwink U, Misra UK, et al. Tuberculous meningitis. Nat Rev Neurol, 2017, 13(10): 581-598.
|
9. |
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017, 542(7639): 115-118.
|
10. |
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 2016, 316(22): 2402-2410.
|
11. |
Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology, 2017, 284(2): 574-582.
|
12. |
Becker AS, Blüthgen C, Phi Van VD, et al. Detection of tuberculosis patterns in digital photographs of chest X-ray images using deep learning: feasibility study. Int J Tuberc Lung Dis, 2018, 22(3): 328-335.
|
13. |
Gao XW, Qian Y. Prediction of multidrug-resistant TB from ct pulmonary images based on deep learning techniques. Mol Pharm, 2018.
|
14. |
Zak DE, Penn-Nicholson A, Scriba TJ, et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet, 2016, 387(135): 2312-2322.
|
15. |
Berry MP, Graham CM, Mcnab FW, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature, 2010, 466(739): 973-977.
|
16. |
Yang Y, Niehaus KE, Walker TM, et al. Machine learning for classifying tuberculosis drug-resistance from DNA sequencing data. Bioinformatics, 2018, 34(10): 1666-1671.
|
17. |
Chaudhary K, Poirion OB, Lu L, et al. Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res, 2018, 24(6): 1248-1259.
|