1. |
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013, 19(2): 141-157.
|
2. |
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441): 333-338.
|
3. |
Piwecka M, Glažar P, Hernandez-Miranda LR, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science, 2017, 357(6357): eaam8526.
|
4. |
Guo JU, Agarwal V, Guo H, et al. Expanded identification and characterization of mammalian circular RNAs. Genome Biol, 2014, 15(7): 409.
|
5. |
Arendt T, Ueberham U, Janitz M. Non-coding transcriptome in brain aging. Aging (Albany NY), 2017, 9(9): 1943-1944.
|
6. |
Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell, 2014, 56(1): 55-66.
|
7. |
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441): 384-388.
|
8. |
Vidal AF, Sandoval GT, Magalhães L, et al. Circular RNAs as a new field in gene regulation and their implications in translational research. Epigenomics, 2016, 8(4): 551-562.
|
9. |
Ivanov A, Memczak S, Wyler E, et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep, 2015, 10(2): 170-177.
|
10. |
Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell, 2015, 160(6): 1125-1134.
|
11. |
Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev, 2014, 28(20): 2233-2247.
|
12. |
Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol, 2015, 22(3): 256-264.
|
13. |
Starke S, Jost I, Rossbach O, et al. Exon circularization requires canonical splice signals. Cell Rep, 2015, 10(1): 103-111.
|
14. |
Hansen TB, Wiklund ED, Bramsen JB, et al. miRNA-dependent gene silencing involving ago2-mediated cleavage of a circular antisense RNA. EMBO J, 2011, 30(21): 4414-4422.
|
15. |
Ghosal S, Das S, Sen R, et al. Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits. Front Genet, 2013, 4: 283.
|
16. |
Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA, 2014, 20(11): 1666-1670.
|
17. |
Dudekula DB, Panda AC, Grammatikakis I, et al. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol, 2016, 13(1): 34-42.
|
18. |
Zhang R, Xu J, Zhao J, et al. Silencing of hsa_circ_0007534 suppresses proliferation and induces apoptosis in colorectal cancer cells. Eur Rev Med Pharmacol Sci, 2018, 22(1): 118-126.
|
19. |
Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs. Mol Cell, 2013, 51(6): 792-806.
|
20. |
Salzman J, Gawad C, Wang PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One, 2012, 7(2): e30733.
|
21. |
Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression. PLoS Genet, 2013, 9(9): e1003777.
|
22. |
Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun, 2016, 7: 11215.
|
23. |
Pamudurti NR, Bartok O, Jens M, et al. Translation of CircRNA s. Mol Cell, 2017, 66(1): 9-21.
|
24. |
Zhuang ZG, Zhang JA, Luo HL, et al. The circular RNA of peripheral blood mononuclear cells: Hsa_circ_0005836 as a new diagnostic biomarker and therapeutic target of active pulmonary tuberculosis. Mol Immunol, 2017, 90: 264-272.
|
25. |
Qian Z, Liu H, Li M, et al. Potential diagnostic power of blood circular RNA expression in active pulmonary tuberculosis. EBioMedicine, 2018, 27: 18-26.
|
26. |
Huang ZK, Yao FY, Xu JQ, et al. Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from active tuberculosis patients. Cell Physiol Biochem, 2018, 45(3): 1230-1240.
|
27. |
Zhang X, Zhu M, Yang R, et al. Identification and comparison of novel circular RNAs with associated co-expression and competing endogenous RNA networks in pulmonary tuberculosis. Oncotarget, 2017, 8(69): 113571-113582.
|
28. |
Wang M, Yang Y, Xu J, et al. CircRNA s as biomarkers of cancer: a meta-analysis. BMC Cancer, 2018, 18(1): 303.
|
29. |
Kefas B, Godlewski J, Comeau L, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res, 2008, 68(10): 3566-3572.
|
30. |
Zhao Y, Alexandrov PN, Jaber V, et al. Deficiency in the ubiquitin conjugating enzyme UBE2A in Alzheimer’s disease (AD) is linked to deficits in a natural circular miRNA-7 sponge (circRNA; ciRS-7). Genes (Basel), 2016, 7(12): E116.
|
31. |
Ouyang Q, Wu J, Jiang Z, et al. Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from rheumatoid arthritis patients. Cell Physiol Biochem, 2017, 42(2): 651-659.
|
32. |
Zhao Z, Li X, Jian D, et al. Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus. Acta Diabetol, 2017, 54(3): 237-245.
|
33. |
Zhu X, Wang X, Wei S, et al. hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J, 2017, 284(14): 2170-2182.
|
34. |
Huang XY, Huang ZL, Xu YH, et al. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA -100338/miR-141-3p pathway in hepatitis B-related hepatocellular carcinoma. Sci Rep, 2017, 7(1): 5428.
|
35. |
López de Armentia MM, Amaya C, Colombo MI. Rab GTPases and the autophagy pathway: bacterial tagets for a suitable biogenesis and trafficking of their own vacuoles. Cells, 2016, 5(1): E11.
|
36. |
Liu Y, Cui H, Wang W, et al. Construction of circular miRNA sponges targeting miR-21 or miR-221 and demonstration of their excellent anticancer effects on malignant melanoma cells. Int J Biochem Cell Biol, 2013, 45(11): 2643-2650.
|