1. |
世界卫生组织. 2017全球结核病报告. (2018-01-28)[2018-06-01]. http://www.who.int/tb/publications/global_report/gtbr2017_executive_summary_zh.pdf?ua=1.
|
2. |
陈大川, 王在义. 肺结核诊断的研究进展. 临床肺科杂志, 2016, 21(1): 145-148.
|
3. |
Lawn SD. Diagnosis of pulmonary tuberculosis. Curr Opin Pulm Med, 2013, 19(3): 280-288.
|
4. |
孙会姗, 潘丽萍, 贾红彦, 等. 血清蛋白质组学技术在结核病诊断中的研究进展. 中华结核和呼吸杂志, 2017, 40(5): 363-365.
|
5. |
Agranoff D, Fernandez-Reyes D, Papadopoulos MC, et al. Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum. Lancet, 2006, 368(9540): 1012-1021.
|
6. |
Liu Q, Pan L, Han F, et al. Proteomic profiling for plasma biomarkers of tuberculosis progression. Mol Med Rep, 2018, 18(2): 1551-1559.
|
7. |
刘琦, 刘新宇, 张仁卿, 等. 汉、藏族肺结核患者血清差异蛋白质的质谱分析. 第三军医大学学报, 2010, 32(18): 1986-1990.
|
8. |
Liu J, Jiang T, Jiang F, et al. Comparative proteomic analysis of serum diagnosis patterns of sputum smear-positive pulmonary tuberculosis based on magnetic bead separation and mass spectrometry analysis. Int J Clin Exp Med, 2015, 8(2): 2077-2085.
|
9. |
Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med, 2011, 155(8): 529-536.
|
10. |
温红侠, 陈一强, 何敏, 等. 采用蛋白芯片筛选活动性肺结核血清标志物. 中华结核和呼吸杂志, 2008, 31(1): 63-64.
|
11. |
吴雪琼, 张俊仙, 梁艳, 等. 应用蛋白质谱建立活动性肺结核病的血清诊断模型. 中华微生物学和免疫学杂志, 2008, 28(11): 1040-1043.
|
12. |
Liu Q, Chen X, Hu C, et al. Serum protein profiling of smear-positive and smear-negative pulmonary tuberculosis using SELDI-TOF mass spectrometry. Lung, 2010, 188(1): 15-23.
|
13. |
翁丽珍, 王琳, 李学玲, 等. 肺结核蛋白指纹图谱诊断技术研究. 中国人兽共患病学报, 2010, 26(11): 1048-1051.
|
14. |
Deng C, Lin M, Hu C, et al. Exploring serological classification tree model of active pulmonary tuberculosis by magnetic beads pretreatment and MALDI-TOF MS analysis. Scand J Immunol, 2011, 74(4): 397-405.
|
15. |
Liu JY, Jin L, Zhao MY, et al. New serum biomarkers for detection of tuberculosis using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. Clin Chem Lab Med, 2011, 49(10): 1727-1733.
|
16. |
王琳, 翁丽珍, 李学玲, 等. 蛋白质指纹图谱技术在肺结核、肺癌鉴别诊断中的应用研究. 中国防痨杂志, 2011, 33(4): 209-213.
|
17. |
Zhang J, Wu X, Shi L, et al. Diagnostic serum proteomic analysis in patients with active tuberculosis. Clin Chim Acta, 2012, 413(9/10): 883-887.
|
18. |
Liu J, Jiang T, Wei L, et al. The discovery and identification of a candidate proteomic biomarker of active tuberculosis. BMC Infect Dis, 2013, 13(1): 506.
|
19. |
De Groote MA, Sterling DG, Hraha T, et al. Discovery and validation of a six-marker serum protein signature for the diagnosis of active pulmonary tuberculosis. J Clin Microbiol, 2017, 55(10): 3057-3071.
|
20. |
Zhang X, Liu F, Li Q, et al. A proteomics approach to the identification of plasma biomarkers for latent tuberculosis infection. Diagn Microbiol Infect Dis, 2014, 79(4): 432-437.
|
21. |
Zhang L, Wang Q, Wang W, et al. Identification of putative biomarkers for the serodiagnosis of drug-resistant Mycobacterium tuberculosis. Proteome Sci, 2012, 10: 12.
|
22. |
Nahid P, Bliven-Sizemore E, Jarlsberg LG, et al. Aptamer-based proteomic signature of intensive phase treatment response in pulmonary tuberculosis. Tuberculosis (Edinb), 2014, 94(3): 187-196.
|
23. |
Xu D, Li Y, Li X, et al. Serum protein S100A9, SOD3, and MMP9 as new diagnostic biomarkers for pulmonary tuberculosis by iTRAQ-coupled two-dimensional LC-MS/MS. Proteomics, 2015, 15(1): 58-67.
|