1. |
Martel-Pelletier J, Pelletier JP. Is osteoarthritis a disease involving only cartilage or other articular tissues?. Eklem Hastalik Cerrahisi, 2010, 21(1): 2-14.
|
2. |
Atik OŞ, Tokgöz N. Do periarticular dense bone islands cause cartilage destruction?. Eklem Hastalik Cerrahisi, 2013, 24(1): 39-40.
|
3. |
Ma J, Niu DS, Wan NJ, et al. Elevated chemerin levels in synovial fluid and synovial membrane from patients with knee osteoarthritis. Int J Clin Exp Pathol, 2015, 8(10): 13393-13398.
|
4. |
Reichenbach S, Blank S, Rutjes AW, et al. Hylan versus hyaluronic acid for osteoarthritis of the knee: a systematic review and meta-analysis. Arthritis Rheum, 2007, 57(8): 1410-1418.
|
5. |
Hunter DJ. Insights from imaging on the epidemiology and pathophysiology of osteoarthritis. Radiol Clin North Am, 2009, 47(4): 539-551.
|
6. |
Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 1999, 29(11): 1181-1189.
|
7. |
Adams SB, Setton LA, Nettles DL. The role of metabolomics in osteoarthritis research. J Am Acad Orthop Surg, 2013, 21(1): 63-64.
|
8. |
Vicky De Preter. Metabonomics and systems biology. Metabonomics methods and protocols. New York: Humana Press, 2015: 245-255.
|
9. |
Moreland LW. Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: mechanisms of action. Arthritis Res Ther, 2003, 5(2): 54-67.
|
10. |
Zhu J, Lei P, Hu Y. Intraarticular hyaluronate injection for knee osteoarthritis-reconsider the rationale. Ann Transl Med, 2015, 3(15): 214.
|
11. |
Peyron JG, Balazs EA. Preliminary clinical assessment of Na-hyaluronate injection into human arthritic joints. Pathol Biol (Paris), 1974, 22(8): 731-736.
|
12. |
中华人民共和国国家质量监督检验检疫总局. GB 14925-2010: 实验动物环境及设施. 北京: 中国标准出版社, 2010.
|
13. |
Hulth A, Lindberg L, Telhag H. Experimental osteoarthritis in rabbits. Preliminary report. Acta Orthop Scand, 1970, 41(5): 522-530.
|
14. |
Xiao C, Hao F, Qin X, et al. An optimized buffer system for NMR-based urinary metabonomics with effective pH control, chemical shift consistency and dilution minimization. Analyst, 2009, 134(5): 916-925.
|
15. |
Poulet B, de Souza R, Knights CB, et al. Modifications of gait as predictors of natural osteoarthritis progression in STR/Ort mice. Arthritis Rheumatol, 2014, 66(7): 1832-1842.
|
16. |
Culley KL, Dragomir CL, Chang J, et al. Mouse models of osteoarthritis: surgical model of posttraumatic osteoarthritis induced by destabilization of the medial meniscus. Methods Mol Biol, 2015, 1226: 143-173.
|
17. |
Dyke JP, Synan M, Ezell P, et al. Characterization of bone perfusion by dynamic contrast-enhanced magnetic resonance imaging and positron emission tomography in the Dunkin-Hartley Guinea pig model of advanced osteoarthritis. J Orthop Res, 2015, 33(3): 366-372.
|
18. |
Lane NE, Thompson JM. Management of osteoarthritis in the primary-care setting: an evidence-based approach to treatment. Am J Med, 1997, 103(6a): 25S-30S.
|
19. |
Muehleman C, Green J, Williams JM, et al. The effect of bone remodeling inhibition by zoledronic acid in an animal model of cartilage matrix damage. Osteoarthritis and Cartilage, 2002, 10(3): 226-233.
|
20. |
Marijnissen AC, van Roermund PM, Verzijl N, et al. Steady progression of osteoarthritic features in the canine groove model. Osteoarthritis Cartilage, 2002, 10(4): 282-289.
|
21. |
Toole BP. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer, 2004, 4(7): 528-539.
|
22. |
Pham T, Le Henanff A, Ravaud P, et al. Evaluation of the symptomatic and structural efficacy of a new hyaluronic acid compound, NRD101, in comparison with diacerein and placebo in a 1 year randomised controlled study in symptomatic knee osteoarthritis. Ann Rheum Dis, 2004, 63(12): 1611-1617.
|
23. |
Kondo K, Jingushi S, Ohfuji S, et al. Factors associated with functional limitations in the daily living activities of Japanese hip osteoarthritis patients. Int J Rheum Dis, 2017, 20(10): 1372-1382.
|
24. |
Jung S, Petelska A, Beldowski P, et al. Hyaluronic acid and phospholipid interactions useful for repaired articular cartilage surfaces-a mini review toward tribological surgical adjuvants. Colloid Polym Sci, 2017, 295(3): 403-412.
|
25. |
McBride A, Khan HI, Aitken D, et al. Does cartilage volume measurement or radiographic osteoarthritis at baseline independently predict ten-year cartilage volume loss?. BMC Musculoskelet Disord, 2016: 54.
|
26. |
Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol, 2007, 213(3): 626-634.
|
27. |
Loeser RF, Goldring SR, Scanzello CR, et al. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum, 2012, 64(6): 1697-1707.
|
28. |
Anderson DD, Chubinskaya S, Guilak F, et al. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J Orthop Res, 2011, 29(6): 802-809.
|
29. |
Loeser RF. Aging and osteoarthritis. Curr Opin Rheumatol, 2011, 23(5): 492-496.
|
30. |
Lotz M, Loeser RF. Effects of aging on articular cartilage homeostasis. Bone, 2012, 51(2, SI): 241-248.
|
31. |
Zignego DL, Hilmer JK, June RK. Mechanotransduction in primary human osteoarthritic chondrocytes is mediated by metabolism of energy, lipids, and amino acids. J Biomech, 2015, 48(16): 4253-4261.
|
32. |
Petursson F, Husa M, June R, et al. Linked decreases in liver kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes. Arthritis Res Ther, 2013, 15(4): R77.
|
33. |
Zhang W, Likhodii S, Aref-Eshghi E, et al. Relationship between blood plasma and synovial fluid metabolite concentrations in patients with osteoarthritis. J Rheumatol, 2015, 42(5): 859-865.
|
34. |
Chen R, Han S, Liu X, et al. Perturbations in amino acids and metabolic pathways in osteoarthritis patients determined by targeted metabolomics analysis. J Chromatogr B Analyt Technol Biomed Life Sci, 2018, 1085: 54-62.
|
35. |
Adler N, Schoeniger A, Fuhrmann H. Polyunsaturated fatty acids influence inflammatory markers in a cellular model for canine osteoarthritis. J Anim Physiol Anim Nutr (Berl), 2018, 102(2): e623-e632.
|
36. |
Wen ZH, Chang YC, Jean YH. Excitatory amino acid glutamate: role in peripheral nociceptive transduction and inflammation in experimental and clinical osteoarthritis. Osteoarthritis Cartilage, 2015, 23(11): 2009-2016.
|
37. |
Batch BC, Shah SH, Newgard CB, et al. Branched chain amino acids are novel biomarkers for discrimination of metabolic wellness. Metabolism, 2013, 62(7): 961-969.
|
38. |
Zhang W, Sun G, Aitken D, et al. Lysophosphatidylcholines to phosphatidylcholines ratio predicts advanced knee osteoarthritis. Rheumatology (Oxford), 2016, 55(9): 1566-1574.
|
39. |
Zhai G, Randell EW, Rahman P. Metabolomics of osteoarthritis: emerging novel markers and their potential clinical utility. Rheumatology (Oxford), 2018. doi: 10.1093/rheumatology/kex497.
|
40. |
Collins KH, Paul HA, Reimer RA, et al. Relationship between inflammation, the gut microbiota, and metabolic osteoarthritis development: studies in a rat model. Osteoarthritis Cartilage, 2015, 23(11): 1989-1998.
|
41. |
Zhuo Q, Yang W, Chen JY, et al. Metabolic syndrome meets osteoarthritis. Nat Rev Rheumatol, 2012, 8(12): 729-737.
|
42. |
Woods A, James CG, Wang G, et al. Control of chondrocyte gene expression by actin dynamics: a novel role of cholesterol/Ror-alpha signalling in endochondral bone growth. J Cell Mol Med, 2009, 13(9b): 3497-3516.
|
43. |
Huang Z, Kraus VB. Does lipopolysaccharide-mediated inflammation have a role in OA?. Nat Rev Rheumatol, 2016, 12(2): 123-129.
|