1. |
Guo H, Xiong Y, Witkowski P, et al. Inefficient translocation of preproinsulin contributes to pancreatic β cell failure and late-onset diabetes. J Biol Chem, 2014, 289(23): 16290-16302.
|
2. |
Støy J, Edghill EL, Flanagan SE, et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci USA, 2007, 104(38): 15040-15044.
|
3. |
Bonfanti R, Colombo C, Nocerino V, et al. Insulin gene mutations as cause of diabetes in children negative for five type 1 diabetes autoantibodies. Diabetes Care, 2009, 32(1): 123-125.
|
4. |
Meur G, Simon A, Harun N, et al. Insulin gene mutations resulting in early-onset diabetes: marked differences in clinical presentation, metabolic status, and pathogenic effect through endoplasmic reticulum retention. Diabetes, 2010, 59(3): 653-661.
|
5. |
Hodish I, Liu M, Rajpal G, et al. Misfolded proinsulin affects bystander proinsulin in neonatal diabetes. J Biol Chem, 2010, 285(1): 685-694.
|
6. |
Park SY, Ye H, Steiner DF, et al. Mutant proinsulin proteins associated with neonatal diabetes are retained in the endoplasmic reticulum and not efficiently secreted. Biochem Biophys Res Commun, 2010, 391(3): 1449-1454.
|
7. |
Steiner DF, Tager HS, Chan SJ, et al. Lessons learned from molecular biology of insulin-gene mutations. Diabetes Care, 1990, 13(6): 600-609.
|
8. |
Colombo C, Porzio O, Liu M, et al. Seven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus. J Clin Invest, 2008, 118(6): 2148-2156.
|
9. |
Haataja L, Manickam N, Soliman A, et al. Disulfide mispairing during proinsulin folding in the endoplasmic reticulum. Diabetes, 2016, 65(4): 1050-1060.
|
10. |
Kim YH, Kastner K, Abdul-Wahid B, et al. Evaluation of conformational changes in diabetes-associated mutation in insulin a chain: a molecular dynamics study. Proteins, 2015, 83(4): 662-669.
|
11. |
Renner S, Braun-Reichhart C, Blutke A, et al. Permanent neonatal diabetes in INS(C94Y) transgenic pigs. Diabetes, 2013, 62(5): 1505-1511.
|
12. |
Blutke A, Renner S, Flenkenthaler F, et al. The Munich MIDY pig biobank: a unique resource for studying organ crosstalk in diabetes. Mol Metab, 2017, 6(8): 931-940.
|
13. |
Støy J, Olsen J, Park SY, et al. In vivo measurement and biological characterisation of the diabetes-associated mutant insulin p.R46Q (GlnB22-insulin). Diabetologia, 2017, 60(8): 1423-1431.
|
14. |
Haataja L, Snapp E, Wright J, et al. Proinsulin intermolecular interactions during secretory trafficking in pancreatic β cells. J Biol Chem, 2013, 288(3): 1896-1906.
|
15. |
Wright J, Birk J, Haataja L, et al. Endoplasmic reticulum oxidoreductin-1α (Ero1α) improves folding and secretion of mutant proinsulin and limits mutant proinsulin-induced endoplasmic reticulum stress. J Biol Chem, 2013, 288(43): 31010-31018.
|
16. |
He K, Cunningham CN, Manickam N, et al. PDI reductase acts on Akita mutant proinsulin to initiate retrotranslocation along the Hrd1/Sel1L-p97 axis. Mol Biol Cell, 2015, 26(19): 3413-3423.
|
17. |
Cunningham CN, He K, Arunagiri A, et al. Chaperone-driven degradation of a misfolded proinsulin mutant in parallel with restoration of wild-type insulin secretion. Diabetes, 2017, 66(3): 741-753.
|