1. |
Wang H, Wang X, Zou X, et al. Comprehensive molecular diagnosis of a large Chinese Leber congenital amaurosis cohort. Invest Ophthalmol Vis Sci, 2015, 56(6): 3642-3655.
|
2. |
Leber T. Retinitis pigmentosa und angeborene amaurose. Albrecht von Graefes Arch Ophthal, 1869, 15(3): 1-25.
|
3. |
Mayer AK, Mahajnah M, Zobor D, et al. Novel homozygous large deletion including the 5’part of the SPATA7 gene in a consanguineous Israeli Muslim Arab family. Mol Vis, 2015, 21: 306-315.
|
4. |
Galvin JA, Fishman GA, Stone EM, et al. Clinical phenotypes in carriers of Leber congenital amaurosis mutations. Ophthalmology, 2005, 112(2): 349-356.
|
5. |
Weleber RG, Francis PJ, Trzupek KM, et al. Leber congenital amaurosis. GeneReviews®. (2004-07-07)[2013-05-02]. https://www.ncbi.nlm.nih.gov/books/NBK1298/.
|
6. |
den Hollander AI, Roepman R, Koenekoop RK, et al. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res, 2008, 27(4): 391-419.
|
7. |
Wang P, Guo X, Zhang Q. Further evidence of autosomal-dominant Leber congenital amaurosis caused by heterozygous CRX mutation. Graefes Arch Clin Exp Ophthalmo, 2007, 245(9): 1401-1402.
|
8. |
Hosono K, Harada Y, Kurata K, et al. Novel GUCY2D gene mutations in Japanese male twins with Leber congenital amaurosis. J Ophthalmol, 2015: 693468.
|
9. |
Katagiri S, Hayashi T, Kondo M, et al. RPE65 mutations in two Japanese families with Leber congenital amaurosis. Ophthalmic Genet, 2016, 37(2): 161-169.
|
10. |
Perrault I, Hanein S, Gerard X, et al. Spectrum of SPATA7 mutations in Leber congenital amaurosis and delineation of the associated phenotype. Hum Mutat, 2010, 31(3): E1241-E1250.
|
11. |
Bellingham J, Davidson AE, Aboshiha J, et al. Investigation of aberrant splicing induced by AIPL1 variations as a cause of Leber congenital amaurosis. Invest Ophthalmol Vis Sci, 2015, 56(13): 7784-7793.
|
12. |
Corton M, Avila-Fernandez A, Vallespín E, et al. Involvement of LCA5 in Leber congenital amaurosis and retinitis pigmentosa in the Spanish population. Ophthalmology, 2014, 121(1): 399-407.
|
13. |
Koenekoop RK. RPGRIP1 is mutated in Leber congenital amaurosis: a mini-review. Ophthalmic Genet, 2005, 26(4): 175-179.
|
14. |
Nichols LL, Alur RP, Boobalan E, et al. Two novel CRX mutant proteins causing autosomal dominant Leber congenital amaurosis interact differently with NRL. Hum Mutat, 2010, 31(6): E1472-E1483.
|
15. |
Vámos R, Külm M, Szabó V, et al. Leber congenital amaurosis: first genotyped Hungarian patients and report of 2 novel mutations in the CRB1 and CEP290 genes. Eur J Ophthalmol, 2016, 26(1): 78-84.
|
16. |
Hedergott A, Volk AE, Herkenrath P, et al. Clinical and genetic findings in a family with NMNAT1-associated Leber congenital amaurosis: case report and review of the literature. Graefes Arch Clin Exp Ophthalmol, 2015, 253(12): 2239-2246.
|
17. |
Friedman JS, Chang B, Kannabiran C, et al. Premature truncation of a novel protein, RD3, exhibiting subnuclear localization is associated with retinal degeneration. Am J Hum Genet, 2006, 79(6): 1059-1070.
|
18. |
Sodi A, Caputo R, Passerini I, et al. Novel RDH12 sequence variations in Leber congenital amaurosis. J AAPOS, 2010, 14(4): 349-351.
|
19. |
Sénéchal A, Humbert G, Surget MO, et al. Screening genes of the retinoid metabolism: novel LRAT mutation in Leber congenital amaurosis. Am J Ophthalmol, 2006, 142(4): 702-704.
|
20. |
Guo Y, Prokudin I, Yu C, et al. Advantage of whole exome sequencing over Allele-specific and targeted segment sequencing in detection of novel TULP1 mutation in Leber congenital amaurosis. Ophthalmic Genet, 2015, 36(4): 333-338.
|
21. |
Pattnaik BR, Shahi PK, Marino MJ, et al. A novel KCNJ13 nonsense mutation and loss of Kir7.1 channel function causes Leber congenital amaurosis (LCA16). Hum Mutat, 2015, 36(7): 720-727.
|
22. |
Stone EM, Cideciyan AV, Aleman TS, et al. Variations in NPHP5 in patients with nonsyndromic Leber congenital amaurosis and senior-loken syndrome. Arch Ophthalmol, 2011, 129(1): 81-87.
|
23. |
Estrada-Cuzcano A, Koenekoop RK, Coppieters F, et al. IQCB1 mutations in patients with Leber congenital amaurosis. Invest Ophthalmol Vis Sci, 2011, 52(2): 834-839.
|
24. |
Li L, Xiao X, Li S, et al. Detection of variants in 15 genes in 87 unrelated Chinese patients with Leber congenital amaurosis. PLoS One, 2011, 6(5): e19458.
|
25. |
Wang X, Wang H, Sun V, et al. Comprehensive molecular diagnosis of 179 Leber congenital amaurosis and juvenile retinitis pigmentosa patients by targeted next Generation sequencing. J Med Genet, 2013, 50(10): 674-688.
|
26. |
Mackay DS, Ocaka LA, Borman AD, et al. Screening of SPATA7 in patients with Leber congenital amaurosis and severe childhood-onset retinal dystrophy reveals disease-causing mutations. Invest Ophthalmol Vis Sci, 2011, 52(6): 3032-3038.
|
27. |
Wang SY, Zhang Q, Zhang X, et al. Comprehensive analysis of genetic variations in strictly-defined Leber congenital amaurosis with whole-exome sequencing in Chinese. Int J Ophthalmol, 2016, 9(9): 1260-1264.
|
28. |
Inoue H, Tanizawa Y, Wasson J, et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet, 1998, 20(2): 143-148.
|
29. |
Kawano J, Tanizawa Y, Shinoda K. Wolfram syndrome 1 (Wfs1) gene expression in the normal mouse visual system. J Comp Neurol, 2008, 510(1): 1-23.
|
30. |
Hofmann S, Philbrook C, Gerbitz KD, et al. Wolfram syndrome: structural and functional analyses of mutant and wild-type wolframin, the WFS1 gene product. Hum Mol Genet, 2003, 12(16): 2003-2012.
|
31. |
Bujakowska K, Audo I, Mohand-Saïd S, et al. CRB1 mutations in inherited retinal dystrophies. Hum Mutat, 2012, 33(2): 306-315.
|
32. |
Hasan SM, Azmeh A, Mostafa O, et al. Coat’s like vasculopathy in Leber congenital amaurosis secondary to homozygous mutations in CRB1: a case report and discussion of the management options. BMC Res Notes, 2016, 9: 91.
|
33. |
Pawlyk BS, Bulgakov OV, Liu X, et al. Replacement gene therapy with a humanRPGRIP1 sequence slows photoreceptor degeneration in a murine model of Leber congenital amaurosis. Hum Gene Ther, 2010, 21(8): 993-1004.
|
34. |
Hanein S, Perrault I, Gerber S, et al. Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. Hum Mutat, 2004, 23(4): 306-317.
|
35. |
Galvin JA, Fishman GA, Stone EM, et al. Evaluation of genotype-phenotype associations in Leber congenital amaurosis. Retina, 2005, 25(7): 919-929.
|
36. |
Yzer S, Leroy BP, De Baere E, et al. Microarray-based mutation detection and phenotypic characterization of patients with Leber congenital amaurosis. Invest Ophthalmol Vis Sci, 2006, 47(3): 1167-1176.
|
37. |
Yzer S, Hollander AI, Lopez I, et al. Ocular and extra-ocular features of patients with Leber congenital amaurosis and mutations in CEP290. Mol Vis, 2012, 18: 412-425.
|
38. |
Gradstein L, Zolotushko J, Sergeev YV, et al. Novel GUCY2D mutation causes phenotypic variability of Leber congenital amaurosis in a large kindred. BMC Med Genet, 2016, 17(1): 52.
|
39. |
Tan MH, Mackay DS, Cowing J, et al. Leber congenital amaurosis associated with AIPL1: challenges in ascribing disease causation, clinical findings, and implications for gene therapy. PLoS One, 2012, 7(3): e32330.
|
40. |
Hosch J, Lorenz B, Stieger K. RPGR: role in the photoreceptor cilium, human retinal disease, and gene therapy. Ophthalmic Genet, 2011, 32(1): 1-11.
|
41. |
Lorenz B, Gyürüs P, Preising M, et al. Early-onset severe rod-cone dystrophy in young children with RPE65 mutations. Invest Ophthalmol Vis Sci, 2000, 41(9): 2735-2742.
|
42. |
Drivas TG, Holzbaur EL, Bennett J. Disruption of CEP290 microtubule/membrane-binding domains causes retinal degeneration. J Clin Invest, 1994, 123(10): 4525-4539.
|
43. |
Perrault I, Delphin N, Hanein S, et al. Spectrum of NPHP6/CEP290 mutations in Leber congenital amaurosis and delineation of the associated phenotype. Hum Mutat, 2007, 28(4): 416.
|
44. |
Koenekoop RK, Wang H, Majewski J, et al. Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration. Nat Genet, 2012, 44(9): 1035-1039.
|
45. |
Hufnagel RB, Ahmed ZM, Corrêa ZM, et al. Gene therapy for Leber congenital amaurosis: advances and future directions. Graefes Arch Clin Exp Ophthalmol, 2012, 250(8): 1117-1128.
|