Familial exudative vitreoretinopathy (FEVR) is a severe inherited vitreoretinal disorder. Recently, mutations in genes encoding frizzled 4 (FZD4), low density lipoprotein receptor-related protein 5 (LRP5), norrie disease protein (NDP), tetraspanin 12 (TSPAN12), zinc fmger protein 408 (ZNF408), kinesin family member 11 (KIF11) have so far been identified to cause FEVR. The former four genes have been shown to participate in the Wnt and Norrin-β-catenin signal pathway, which perform a crucial role for this pathway in ocular and vascular development. The primary clinical feature of FEVR is incomplete retinal vascular development on the temporal side of the peripheral retina, with or without abnormal retinal vascular differentiation. The clinical manifestations of this disease differ greatly among patients, from asymptomatic to complete retinal detachments with blindness. Fundus angiography and genetic screening are the main diagnostic methods for this disease and the early screening is extremely important in the treatment and prognosis. The progress can be controlled by laser treatment at the initial stage. Scleral buckling surgery and vitrectomy can be performed with advanced retinal detachment, but the prognosis is poor. The effect of anti-vascular endothelial growth factor drugs on new blood vessels may play a certain role in its treatment. With the in-depth study of pathogenesis, selective targeted treatment of FEVR pathogenic genes will become a new direction of treatment for some kinds of phenotype. This article reviews the recent advances of FEVR.
Citation: XIE Xuelu, LU Fang. Familial exudative vitreoretinopathy. West China Medical Journal, 2018, 33(11): 1420-1427. doi: 10.7507/1002-0179.201810052 Copy
1. | Criswick VG, Schepens CL. Familial exudative vitreoretinopathy. Am J Ophthalmol, 1969, 68(4): 578-594. |
2. | 李瑞峰, 刘端济, 张文韬, 等. 家族性渗出性玻璃体视网膜病变 (附 1 家系 4 例报告). 中华眼底病杂志, 1992, 8(1): 33-35. |
3. | 彭晓燕, 王光璐, 张风, 等. 家族性渗出性玻璃体视网膜病变的临床观察. 中华眼科杂志, 1995, 6(6): 426-429. |
4. | Kondo H. Complex genetics of familial exudative vitreoretinopathy and related pediatric retinal detachments. Taiwan J Ophthalmol, 2015, 5(2): 56-62. |
5. | Gow J, Oliver GL. Familial exudative vitreoretinopathy. An expanded view. Arch Ophthalmol, 1971, 86(2): 150-155. |
6. | Drenser KA, Dailey W, Vinekar A, et al. Clinical presentation and genetic correlation of patients with mutations affecting the FZD4 gene. Arch Ophthalmol, 2009, 127(12): 1649-1654. |
7. | de Crecchio G, Simonelli F, Nunziata G, et al. Autosomal recessive familial exudative vitreoretinopathy: evidence for genetic heterogeneity. Clin Genet, 1998, 54(4): 315-320. |
8. | Jiao X, Ventruto V, Trese MT, et al. Autosomal recessive familial exudative vitreoretinopathy is associated with mutations in LRP5. Am J Hum Genet, 2004, 75(5): 878-884. |
9. | Kondo H, Qin M, Kusaka S, et al. Novel mutations in Norrie disease gene in Japanese patients with Norrie disease and familial exudative vitreoretinopathy. Invest Ophthalmol Vis Sci, 2007, 48(3): 1276-1282. |
10. | Drenser KA, Dailey W, Capone A, et al. Genetic evaluation to establish the diagnosis of X-linked familial exudative vitreoretinopathy. Ophthalmic Genet, 2006, 27(3): 75-78. |
11. | Toomes C, Downey LM, Bottomley HM, et al. Further evidence of genetic heterogeneity in familial exudative vitreoretinopathy; exclusion of EVR1, EVR3, and EVR4 in a large autosomal dominant pedigree. Br J Ophthalmol, 2005, 89(2): 194-197. |
12. | Collin RW, Nikopoulos K, Dona M, et al. ZNF408 is mutated in familial exudative vitreoretinopathy and is crucial for the development of zebrafish retinal vasculature. Proc Natl Acad Sci USA, 2013, 110(24): 9856-9861. |
13. | Robitaille J, Macdonald ML, Kaykas A, et al. Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nat Genet, 2002, 32(2): 326-330. |
14. | Ye X, Wang Y, Cahill H, et al. Norrin, frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell, 2009, 139(2): 285-298. |
15. | Jia LY, Li XX, Yu WZ, et al. Novel frizzled-4 gene mutations in Chinese patients with familial exudative vitreoretinopathy. Arch Ophthalmol, 2010, 128(10): 1341-1349. |
16. | Kondo H, Hayashi H, Oshima K, et al. Frizzled 4 gene (FZD4) mutations in patients with familial exudative vitreoretinopathy with variable expressivity. Br J Ophthalmol, 2003, 87(10): 1291-1295. |
17. | Toomes C, Bottomley HM, Scott S, et al. Spectrum and frequency of FZD4 mutations in familial exudative vitreoretinopathy. Invest Ophthalmol Vis Sci, 2004, 45(7): 2083-2090. |
18. | Xu Q, Wang Y, Dabdoub A, et al. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell, 2004, 116(6): 883-895. |
19. | Qin M, Kondo H, Tahira T, et al. Moderate reduction of Norrin signaling activity associated with the causative missense mutations identified in patients with familial exudative vitreoretinopathy. Hum Genet, 2008, 122(6): 615-623. |
20. | Kondo H, Qin M, Tahira T, et al. Severe form of familial exudative vitreoretinopathy caused by homozygous R417Q mutation in frizzled-4 gene. Ophthalmic Genet, 2007, 28(4): 220-223. |
21. | Milhem RM, Ben-Salem S, Al-Gazali L, et al. Identification of the cellular mechanisms that modulate trafficking of frizzled family receptor 4 (FZD4) missense mutants associated with familial exudative vitreoretinopathy. Invest Ophthalmol Vis Sci, 2014, 55(6): 3423-3431. |
22. | Toomes C, Downey LM, Bottomley HM, et al. Identification of a fourth locus (EVR4) for familial exudative vitreoretinopathy (FEVR). Mol Vis, 2004, 10(2004): 37-42. |
23. | Toomes C, Bottomley HM, Jackson RM, et al. Mutations in LRP5 or FZD4 underlie the common familial exudative vitreoretinopathy locus on chromosome 11q. Am J Hum Genet, 2004, 74(4): 721-730. |
24. | Mao B, Wu W, Li Y, et al. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature, 2001, 411(6835): 321-325. |
25. | Pinson KI, Brennan J, Monkley S, et al. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature, 2000, 407(683): 535-538. |
26. | Xia CH, Liu H, Cheung D, et al. A model for familial exudative vitreoretinopathy caused by LPR5 mutations. Hum Mol Genet, 2008, 17(11): 1605-1612. |
27. | Gong Y, Slee RB, Fukai N, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell, 2001, 107(4): 513-523. |
28. | Nikopoulos K, Venselaar H, Collin RW, et al. Overview of the mutation spectrum in familial exudative vitreoretinopathy and Norrie disease with identification of 21 novel variants in FZD4, LRP5, and NDP. Hum Mutat, 2010, 31(6): 656-666. |
29. | Qin M, Hayashi H, Oshima K, et al. Complexity of the genotype-phenotype correlation in familial exudative vitreoretinopathy with mutations in the LRP5 and/or FZD4 genes. Hum Mutat, 2005, 26(2): 104-112. |
30. | Fullwood P, Jones J, Bundey S, et al. X linked exudative vitreoretinopathy: clinical features and genetic linkage analysis. Br J Ophthalmol, 1993, 77(3): 168-170. |
31. | Yang H, Li S, Xiao X, et al. Screening for NDP mutations in 44 unrelated patients with familial exudative vitreoretinopathy or Norrie disease. Curr Eye Res, 2012, 37(8): 726-729. |
32. | Meitinger T, Meindl A, Bork P, et al. Molecular modelling of the Norrie disease protein predicts a cystine knot growth factor tertiary structure. Nat Genet, 1993, 5(4): 376-380. |
33. | Luhmann UF, Lin J, Acar N, et al. Role of the norrie disease pseudoglioma gene in sprouting angiogenesis during development of the retinal vasculature. Invest Ophthalmol Vis Sci, 2005, 46(9): 3372-3382. |
34. | Ohlmann A, Scholz M, Goldwich A, et al. Ectopic norrin induces growth of ocular capillaries and restores normal retinal angiogenesis in Norrie disease mutant mice. J Neurosci, 2005, 25(7): 1701-1710. |
35. | Lee H, Jo DH, Kim JH, et al. Norrin expression in endothelial cells in the developing mouse retina. Acta Histochem, 2013, 115(5): 447-451. |
36. | Nikopoulos K, Gilissen C, Hoischen A, et al. Next-generation sequencing of a 40 Mb linkage interval reveals TSPAN12 mutations in patients with familial exudative vitreoretinopathy. Am J Hum Genet, 2010, 86(2): 240-247. |
37. | Poulter JA, Ali M, Gilmour DF, et al. Mutations in TSPAN12 cause autosomal-dominant familial exudative vitreoretinopathy. Am J Hum Genet, 2010, 86(2): 248-253. |
38. | Poulter JA, Davidson AE, Ali M, et al. Recessive mutations in TSPAN12 cause retinal dysplasia and severe familial exudative vitreoretinopathy (FEVR). Invest Ophthalmol Vis Sci, 2012, 53(6): 2873-2879. |
39. | Garcia-España A, Chung PJ, Sarkar IN, et al. Appearance of new tetraspanin genes during vertebrate evolution. Genomics, 2008, 91(4): 326-334. |
40. | Junge HJ, Yang S, Burton JB, et al. TSPAN12 regulates retinal vascular development by promoting Norrin- but not Wnt-induced FZD4/beta-catenin signaling. Cell, 2009, 139(2): 299-311. |
41. | Cui X, De Vivo I, Slany R, et al. Association of SET domain and myotubularin-related proteins modulates growth control. Nat Genet, 1998, 18(4): 331-337. |
42. | Salvo J, Lyubasyuk V, Xu M, et al. Next-generation sequencing and novel variant determination in a cohort of 92 familial exudative vitreoretinopathy patients. Invest Ophthalmol Vis Sci, 2015, 56(3): 1937-1946. |
43. | Ostergaard P, Simpson MA, Mendola A, et al. Mutations in KIF11 cause autosomal-dominant microcephaly variably associated with congenital lymphedema and chorioretinopathy. Am J Hum Genet, 2012, 90(2): 356-362. |
44. | Robitaille JM, Gillett RM, Leblanc MA, et al. Phenotypic overlap between familial exudative vitreoretinopathy and microcephaly, lymphedema, and chorioretinal dysplasia caused by KIF11 mutations. JAMA Ophthalmol, 2014, 132(12): 1393-1399. |
45. | Barresi MJ, Burton S, Dipietrantonio K, et al. Essential genes for astroglial development and axon pathfinding during zebrafish embryogenesis. Dev Dyn, 2010, 239(10): 2603-2618. |
46. | Birtel J, Gliem M, Mangold E, et al. Novel insights into the phenotypical spectrum of KIF11-associated retinopathy, including a new form of retinal ciliopathy. Invest Ophthalmol Vis Sci, 2017, 58(10): 3950-3959. |
47. | Hu H, Xiao X, Li S, et al. KIF11 mutations are a common cause of autosomal dominant familial exudative vitreoretinopathy. Br J Ophthalmol, 2016, 100(2): 278-283. |
48. | Downey LM, Keen TJ, Roberts E, et al. A new locus for autosomal dominant familial exudative vitreoretinopathy maps to chromosome 11p12-13. Am J Hum Genet, 2001, 68(3): 778-781. |
49. | Gandhi JK, Tollefson TT, Telander DG. Falciform macular folds and chromosome 22q11.2: evidence in support of a locus for familial exudative vitreoretinopathy (FEVR). Ophthalmic Genet, 2014, 35(2): 112-116. |
50. | Boonstra FN, Van Nouhuys CE, Schuil J, et al. Clinical and molecular evaluation of probands and family members with familial exudative vitreoretinopathy. Invest Ophthalmol Vis Sci, 2009, 50(9): 4379-4385. |
51. | Pendergast SD, Trese MT. Familial exudative vitreoretinopathy. Results of surgical management. Ophthalmology, 1998, 105(6): 1015-1023. |
52. | Benson WE. Familial exudative vitreoretinopathy. Trans Am Ophthalmol Soc, 1995, 93: 473-521. |
53. | Ranchod TM, Ho LY, Drenser KA, et al. Clinical presentation of familial exudative vitreoretinopathy. Ophthalmology, 2011, 118(10): 2070-2075. |
54. | Rao FQ, Cai XB, Cheng FF, et al. Mutations in LRP5, FZD4, TSPAN12, NDP, ZNF408, or KIF11 genes account for 38.7% of Chinese patients with familial exudative vitreoretinopathy. Invest Ophthalmol Vis Sci, 2017, 58(5): 2623-2629. |
55. | Margolis R, Couvillion SS, Mavrofrides EC, et al. Progression of familial exudative vitreoretinopathy after laser treatment. Arch Ophthalmol, 2004, 122(11): 1717-1719. |
56. | 赵培泉, 虞瑛青, 单海冬, 等. 家族性渗出性玻璃体视网膜病变治疗观察. 中华眼底病杂志, 2006, 22(5): 302-304. |
57. | Nishina S, Suzuki Y, Yokoi T, et al. Clinical features of congenital retinal folds. Am J Ophthalmol, 2012, 153(1): 81-87.e1. |
58. | Chen SN, Hwang JF, Lin CJ. Clinical characteristics and surgical management of familial exudative vitreoretinopathy-associated rhegmatogenous retinal detachment. Retina, 2012, 32(2): 220-225. |
59. | Yamane T, Yokoi T, Nakayama Y, et al. Surgical outcomes of progressive tractional retinal detachment associated with familial exudative vitreoretinopathy. Am J Ophthalmol, 2014, 158(5): 1049-1055. |
60. | Lin KL, Hirose T, Kroll AJ, et al. Prospects for treatment of pediatric vitreoretinal diseases with vascular endothelial growth factor inhibition. Semin Ophthalmol, 2009, 24(2): 70-76. |
61. | Tagami M, Kusuhara S, Honda S, et al. Rapid regression of retinal hemorrhage and neovascularization in a case of familial exudative vitreoretinopathy treated with intravitreal bevacizumab. Graefes Arch Clin Exp Ophthalmol, 2008, 246(12): 1787-1789. |
62. | Hocaoglu M, Karacorlu M, Sayman Muslubas I, et al. Anatomical and functional outcomes following vitrectomy for advanced familial exudative vitreoretinopathy: a single surgeon’s experience. Br J Ophthalmol, 2017, 101(7): 946-950. |
63. | Chen SN, Jiunn-Feng H, Te-Cheng Y. Pediatric rhegmatogenous retinal detachment in Taiwan. Retina, 2006, 26(4): 410-414. |
- 1. Criswick VG, Schepens CL. Familial exudative vitreoretinopathy. Am J Ophthalmol, 1969, 68(4): 578-594.
- 2. 李瑞峰, 刘端济, 张文韬, 等. 家族性渗出性玻璃体视网膜病变 (附 1 家系 4 例报告). 中华眼底病杂志, 1992, 8(1): 33-35.
- 3. 彭晓燕, 王光璐, 张风, 等. 家族性渗出性玻璃体视网膜病变的临床观察. 中华眼科杂志, 1995, 6(6): 426-429.
- 4. Kondo H. Complex genetics of familial exudative vitreoretinopathy and related pediatric retinal detachments. Taiwan J Ophthalmol, 2015, 5(2): 56-62.
- 5. Gow J, Oliver GL. Familial exudative vitreoretinopathy. An expanded view. Arch Ophthalmol, 1971, 86(2): 150-155.
- 6. Drenser KA, Dailey W, Vinekar A, et al. Clinical presentation and genetic correlation of patients with mutations affecting the FZD4 gene. Arch Ophthalmol, 2009, 127(12): 1649-1654.
- 7. de Crecchio G, Simonelli F, Nunziata G, et al. Autosomal recessive familial exudative vitreoretinopathy: evidence for genetic heterogeneity. Clin Genet, 1998, 54(4): 315-320.
- 8. Jiao X, Ventruto V, Trese MT, et al. Autosomal recessive familial exudative vitreoretinopathy is associated with mutations in LRP5. Am J Hum Genet, 2004, 75(5): 878-884.
- 9. Kondo H, Qin M, Kusaka S, et al. Novel mutations in Norrie disease gene in Japanese patients with Norrie disease and familial exudative vitreoretinopathy. Invest Ophthalmol Vis Sci, 2007, 48(3): 1276-1282.
- 10. Drenser KA, Dailey W, Capone A, et al. Genetic evaluation to establish the diagnosis of X-linked familial exudative vitreoretinopathy. Ophthalmic Genet, 2006, 27(3): 75-78.
- 11. Toomes C, Downey LM, Bottomley HM, et al. Further evidence of genetic heterogeneity in familial exudative vitreoretinopathy; exclusion of EVR1, EVR3, and EVR4 in a large autosomal dominant pedigree. Br J Ophthalmol, 2005, 89(2): 194-197.
- 12. Collin RW, Nikopoulos K, Dona M, et al. ZNF408 is mutated in familial exudative vitreoretinopathy and is crucial for the development of zebrafish retinal vasculature. Proc Natl Acad Sci USA, 2013, 110(24): 9856-9861.
- 13. Robitaille J, Macdonald ML, Kaykas A, et al. Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nat Genet, 2002, 32(2): 326-330.
- 14. Ye X, Wang Y, Cahill H, et al. Norrin, frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell, 2009, 139(2): 285-298.
- 15. Jia LY, Li XX, Yu WZ, et al. Novel frizzled-4 gene mutations in Chinese patients with familial exudative vitreoretinopathy. Arch Ophthalmol, 2010, 128(10): 1341-1349.
- 16. Kondo H, Hayashi H, Oshima K, et al. Frizzled 4 gene (FZD4) mutations in patients with familial exudative vitreoretinopathy with variable expressivity. Br J Ophthalmol, 2003, 87(10): 1291-1295.
- 17. Toomes C, Bottomley HM, Scott S, et al. Spectrum and frequency of FZD4 mutations in familial exudative vitreoretinopathy. Invest Ophthalmol Vis Sci, 2004, 45(7): 2083-2090.
- 18. Xu Q, Wang Y, Dabdoub A, et al. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell, 2004, 116(6): 883-895.
- 19. Qin M, Kondo H, Tahira T, et al. Moderate reduction of Norrin signaling activity associated with the causative missense mutations identified in patients with familial exudative vitreoretinopathy. Hum Genet, 2008, 122(6): 615-623.
- 20. Kondo H, Qin M, Tahira T, et al. Severe form of familial exudative vitreoretinopathy caused by homozygous R417Q mutation in frizzled-4 gene. Ophthalmic Genet, 2007, 28(4): 220-223.
- 21. Milhem RM, Ben-Salem S, Al-Gazali L, et al. Identification of the cellular mechanisms that modulate trafficking of frizzled family receptor 4 (FZD4) missense mutants associated with familial exudative vitreoretinopathy. Invest Ophthalmol Vis Sci, 2014, 55(6): 3423-3431.
- 22. Toomes C, Downey LM, Bottomley HM, et al. Identification of a fourth locus (EVR4) for familial exudative vitreoretinopathy (FEVR). Mol Vis, 2004, 10(2004): 37-42.
- 23. Toomes C, Bottomley HM, Jackson RM, et al. Mutations in LRP5 or FZD4 underlie the common familial exudative vitreoretinopathy locus on chromosome 11q. Am J Hum Genet, 2004, 74(4): 721-730.
- 24. Mao B, Wu W, Li Y, et al. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature, 2001, 411(6835): 321-325.
- 25. Pinson KI, Brennan J, Monkley S, et al. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature, 2000, 407(683): 535-538.
- 26. Xia CH, Liu H, Cheung D, et al. A model for familial exudative vitreoretinopathy caused by LPR5 mutations. Hum Mol Genet, 2008, 17(11): 1605-1612.
- 27. Gong Y, Slee RB, Fukai N, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell, 2001, 107(4): 513-523.
- 28. Nikopoulos K, Venselaar H, Collin RW, et al. Overview of the mutation spectrum in familial exudative vitreoretinopathy and Norrie disease with identification of 21 novel variants in FZD4, LRP5, and NDP. Hum Mutat, 2010, 31(6): 656-666.
- 29. Qin M, Hayashi H, Oshima K, et al. Complexity of the genotype-phenotype correlation in familial exudative vitreoretinopathy with mutations in the LRP5 and/or FZD4 genes. Hum Mutat, 2005, 26(2): 104-112.
- 30. Fullwood P, Jones J, Bundey S, et al. X linked exudative vitreoretinopathy: clinical features and genetic linkage analysis. Br J Ophthalmol, 1993, 77(3): 168-170.
- 31. Yang H, Li S, Xiao X, et al. Screening for NDP mutations in 44 unrelated patients with familial exudative vitreoretinopathy or Norrie disease. Curr Eye Res, 2012, 37(8): 726-729.
- 32. Meitinger T, Meindl A, Bork P, et al. Molecular modelling of the Norrie disease protein predicts a cystine knot growth factor tertiary structure. Nat Genet, 1993, 5(4): 376-380.
- 33. Luhmann UF, Lin J, Acar N, et al. Role of the norrie disease pseudoglioma gene in sprouting angiogenesis during development of the retinal vasculature. Invest Ophthalmol Vis Sci, 2005, 46(9): 3372-3382.
- 34. Ohlmann A, Scholz M, Goldwich A, et al. Ectopic norrin induces growth of ocular capillaries and restores normal retinal angiogenesis in Norrie disease mutant mice. J Neurosci, 2005, 25(7): 1701-1710.
- 35. Lee H, Jo DH, Kim JH, et al. Norrin expression in endothelial cells in the developing mouse retina. Acta Histochem, 2013, 115(5): 447-451.
- 36. Nikopoulos K, Gilissen C, Hoischen A, et al. Next-generation sequencing of a 40 Mb linkage interval reveals TSPAN12 mutations in patients with familial exudative vitreoretinopathy. Am J Hum Genet, 2010, 86(2): 240-247.
- 37. Poulter JA, Ali M, Gilmour DF, et al. Mutations in TSPAN12 cause autosomal-dominant familial exudative vitreoretinopathy. Am J Hum Genet, 2010, 86(2): 248-253.
- 38. Poulter JA, Davidson AE, Ali M, et al. Recessive mutations in TSPAN12 cause retinal dysplasia and severe familial exudative vitreoretinopathy (FEVR). Invest Ophthalmol Vis Sci, 2012, 53(6): 2873-2879.
- 39. Garcia-España A, Chung PJ, Sarkar IN, et al. Appearance of new tetraspanin genes during vertebrate evolution. Genomics, 2008, 91(4): 326-334.
- 40. Junge HJ, Yang S, Burton JB, et al. TSPAN12 regulates retinal vascular development by promoting Norrin- but not Wnt-induced FZD4/beta-catenin signaling. Cell, 2009, 139(2): 299-311.
- 41. Cui X, De Vivo I, Slany R, et al. Association of SET domain and myotubularin-related proteins modulates growth control. Nat Genet, 1998, 18(4): 331-337.
- 42. Salvo J, Lyubasyuk V, Xu M, et al. Next-generation sequencing and novel variant determination in a cohort of 92 familial exudative vitreoretinopathy patients. Invest Ophthalmol Vis Sci, 2015, 56(3): 1937-1946.
- 43. Ostergaard P, Simpson MA, Mendola A, et al. Mutations in KIF11 cause autosomal-dominant microcephaly variably associated with congenital lymphedema and chorioretinopathy. Am J Hum Genet, 2012, 90(2): 356-362.
- 44. Robitaille JM, Gillett RM, Leblanc MA, et al. Phenotypic overlap between familial exudative vitreoretinopathy and microcephaly, lymphedema, and chorioretinal dysplasia caused by KIF11 mutations. JAMA Ophthalmol, 2014, 132(12): 1393-1399.
- 45. Barresi MJ, Burton S, Dipietrantonio K, et al. Essential genes for astroglial development and axon pathfinding during zebrafish embryogenesis. Dev Dyn, 2010, 239(10): 2603-2618.
- 46. Birtel J, Gliem M, Mangold E, et al. Novel insights into the phenotypical spectrum of KIF11-associated retinopathy, including a new form of retinal ciliopathy. Invest Ophthalmol Vis Sci, 2017, 58(10): 3950-3959.
- 47. Hu H, Xiao X, Li S, et al. KIF11 mutations are a common cause of autosomal dominant familial exudative vitreoretinopathy. Br J Ophthalmol, 2016, 100(2): 278-283.
- 48. Downey LM, Keen TJ, Roberts E, et al. A new locus for autosomal dominant familial exudative vitreoretinopathy maps to chromosome 11p12-13. Am J Hum Genet, 2001, 68(3): 778-781.
- 49. Gandhi JK, Tollefson TT, Telander DG. Falciform macular folds and chromosome 22q11.2: evidence in support of a locus for familial exudative vitreoretinopathy (FEVR). Ophthalmic Genet, 2014, 35(2): 112-116.
- 50. Boonstra FN, Van Nouhuys CE, Schuil J, et al. Clinical and molecular evaluation of probands and family members with familial exudative vitreoretinopathy. Invest Ophthalmol Vis Sci, 2009, 50(9): 4379-4385.
- 51. Pendergast SD, Trese MT. Familial exudative vitreoretinopathy. Results of surgical management. Ophthalmology, 1998, 105(6): 1015-1023.
- 52. Benson WE. Familial exudative vitreoretinopathy. Trans Am Ophthalmol Soc, 1995, 93: 473-521.
- 53. Ranchod TM, Ho LY, Drenser KA, et al. Clinical presentation of familial exudative vitreoretinopathy. Ophthalmology, 2011, 118(10): 2070-2075.
- 54. Rao FQ, Cai XB, Cheng FF, et al. Mutations in LRP5, FZD4, TSPAN12, NDP, ZNF408, or KIF11 genes account for 38.7% of Chinese patients with familial exudative vitreoretinopathy. Invest Ophthalmol Vis Sci, 2017, 58(5): 2623-2629.
- 55. Margolis R, Couvillion SS, Mavrofrides EC, et al. Progression of familial exudative vitreoretinopathy after laser treatment. Arch Ophthalmol, 2004, 122(11): 1717-1719.
- 56. 赵培泉, 虞瑛青, 单海冬, 等. 家族性渗出性玻璃体视网膜病变治疗观察. 中华眼底病杂志, 2006, 22(5): 302-304.
- 57. Nishina S, Suzuki Y, Yokoi T, et al. Clinical features of congenital retinal folds. Am J Ophthalmol, 2012, 153(1): 81-87.e1.
- 58. Chen SN, Hwang JF, Lin CJ. Clinical characteristics and surgical management of familial exudative vitreoretinopathy-associated rhegmatogenous retinal detachment. Retina, 2012, 32(2): 220-225.
- 59. Yamane T, Yokoi T, Nakayama Y, et al. Surgical outcomes of progressive tractional retinal detachment associated with familial exudative vitreoretinopathy. Am J Ophthalmol, 2014, 158(5): 1049-1055.
- 60. Lin KL, Hirose T, Kroll AJ, et al. Prospects for treatment of pediatric vitreoretinal diseases with vascular endothelial growth factor inhibition. Semin Ophthalmol, 2009, 24(2): 70-76.
- 61. Tagami M, Kusuhara S, Honda S, et al. Rapid regression of retinal hemorrhage and neovascularization in a case of familial exudative vitreoretinopathy treated with intravitreal bevacizumab. Graefes Arch Clin Exp Ophthalmol, 2008, 246(12): 1787-1789.
- 62. Hocaoglu M, Karacorlu M, Sayman Muslubas I, et al. Anatomical and functional outcomes following vitrectomy for advanced familial exudative vitreoretinopathy: a single surgeon’s experience. Br J Ophthalmol, 2017, 101(7): 946-950.
- 63. Chen SN, Jiunn-Feng H, Te-Cheng Y. Pediatric rhegmatogenous retinal detachment in Taiwan. Retina, 2006, 26(4): 410-414.