1. |
Drexler W, Liu M, Kumar A, et al. Optical coherence tomography today: speed, contrast, and multimodality. J Biomed Opt, 2014, 19(7): 071412.
|
2. |
张芹芹. 谱域光相干层析成像技术及其生物学应用研究. 天津: 南开大学, 2012: 1-5.
|
3. |
吴彤. 扫频光相干层析成像方法与系统研究. 浙江: 浙江大学, 2011: 1-11.
|
4. |
Podoleanu AG. Optical coherence tomography. J Microsc, 2012, 247(3): 209-219.
|
5. |
申晓丽, 黄丽娜. 光学相干断层成像技术的临床应用新进展. 国际眼科杂志, 2009, 9(12): 2395-2398.
|
6. |
Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science, 1991, 254(5035): 1178-1181.
|
7. |
Drexler W, Fujimoto JG. Optical coherence tomography-technology and applications. 2nd Ed. Switzerland: Springer International Publishing, 2015: 11-21, 35-45.
|
8. |
Swanson EA, Izatt JA, Hee MR, et al. In vivo retinal imaging by optical coherence tomography. Opt Lett, 1993, 18(21): 1864-1866.
|
9. |
Hee MR, Izatt JA, Swanson EA, et al. Optical coherence tomography of the human retina. Arch Ophthalmol, 1995, 113(3): 325-332.
|
10. |
Puliafito CA, Hee MR, Lin CP, et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology, 1995, 102(2): 217-229.
|
11. |
Adhi M, Duker JS. Optical coherence tomography--current and future applications. Curr Opin Ophthalmol, 2013, 24(3): 213-221.
|
12. |
Podoleanu AG. Optical coherence tomography. Br J Radiol, 2005, 78(935): 976-988.
|
13. |
Fercher AF, Hitzenberger CK, Kamp G, et al. Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun, 1995, 117(1/2): 43-48.
|
14. |
Wojtkowski M, Leitgeb R, Kowalczyk A, et al. In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt, 2002, 7(3): 457-463.
|
15. |
Nassif N, Cense B, Park BH, et al. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt Lett, 2004, 29(5): 480-482.
|
16. |
Cense B, Nassif N, Chen T, et al. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt Express, 2004, 12(11): 2435-2447.
|
17. |
Wojtkowski M, Srinivasan VJ, Ko TH, et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express, 2004, 12(11): 2404-2422.
|
18. |
Chinn SR, Swanson EA, Fujimoto JG. Optical coherence tomography using a frequency-tunable optical source. Opt Lett, 1997, 22(5): 340-342.
|
19. |
Yun SH, Gj T, Bouma BE, et al. High-speed spectral-domain optical coherence tomography at 1.3μm wavelength. Opt Express, 2003, 11(26): 3598-3604.
|
20. |
Choma M, Sarunic M, Yang C, et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express, 2003, 11(18): 2183-2189.
|
21. |
Nassif NA, Cense B, Park BH, et al. In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt Express, 2004, 12(3): 367-376.
|
22. |
Potsaid B, Gorczynska I, Srinivasan VJ, et al. Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70, 000 to 312, 500 axial scans per second. Opt Express, 2008, 16(19): 15149-15169.
|
23. |
Golubovic B, Bouma BE, Tearney GJ, et al. Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+: forsterite laser. Opt Lett, 1997, 22(22): 1704-1706.
|
24. |
Oh WY, Yun SH, Gj T, et al. 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser. Opt Lett, 2005, 30(23): 3159-3161.
|
25. |
Srinivasan VJ, Adler DC, Chen YA, et al. Ultrahigh-speed optical coherence tomography for three-dimensional and En face imaging of the retina and optic nerve head. Invest Ophthalmol Vis Sci, 2008, 49(11): 5103-5110.
|
26. |
Huber R, Adler DC, Srinivasan VJ, et al. Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236, 000 axial scans per second. Opt Lett, 2007, 32(14): 2049-2051.
|
27. |
Kim J, Brown W, Maher JR, et al. Functional optical coherence tomography: principles and progress. Phys Med Biol, 2015, 60(10): R211-R237.
|
28. |
Larina IV, Furushima K, Dickinson ME, et al. Live imaging of rat embryos with Doppler swept-source optical coherence tomography. J Biomed Opt, 2009, 14(5): 050506.
|
29. |
Peterson LM, Jenkins MW, Gu S, et al. 4D shear stress maps of the developing heart using Doppler optical coherence tomography. Biomed Opt Express, 2012, 3(11): 3022-3032.
|
30. |
Wang Y, Lu A, Gil-Flamer J, et al. Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography. Br J Ophthalmol, 2009, 93(5): 634-637.
|
31. |
Wang Y, Bower BA, Izatt JA, et al. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J Biomed Opt, 2008, 13(6): 064003.
|
32. |
Riva CE, Grunwald JE, Sinclair SH, et al. Blood velocity and volumetric flow rate in human retinal vessels. Invest Ophthalmol Vis Sci, 1985, 26(8): 1124-1132.
|
33. |
Garcia JS, Garcia PT, Rosen RB. Retinal blood flow in the normal human eye using the canon laser blood flowmeter. Ophthalmic Res, 2001, 42(4, S): S82.
|
34. |
Yazdanfar S, Rollins AM, Izatt JA. In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography. Arch Ophthalmol, 2003, 121(2): 235-239.
|
35. |
White BR, Pierce MC, Nassif N, et al. In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography. Opt Express, 2003, 11(25): 3490-3497.
|
36. |
Hee MR, Huang D, Swanson EA, et al. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J Opt Soc Am B, 1992, 9(6): 903-908.
|
37. |
Yamanari M, Makita S, Yasuno Y. Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation. Opt Express, 2008, 16(8): 5892-5906.
|
38. |
Park BH, Saxer C, Srinivas SM, et al. In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. J Biomed Opt, 2001, 6(4): 474-479.
|
39. |
Lammer J, Bolz M, Baumann B, et al. Detection and analysis of hard exudates by polarization-sensitive optical coherence tomography in patients with diabetic maculopathy. Invest Ophthalmol Vis Sci, 2014, 55(3): 1564-1571.
|
40. |
Ford MR, Roy AS, Rollins AM. Serial biomechanical comparison of edematous, normal, and collagen crosslinked human donor corneas using optical coherence elastography. J Cataract Refract Surg, 2014, 40(6, SI): 1041-1047.
|
41. |
Chhetri RK, Carpenter J, Superfine R, et al. Magnetomotive optical coherence elastography for relating lung structure and function in Cystic Fibrosis. Proc SPIE Int Soc Opt Eng, 2010: 755420.
|
42. |
Liang X, Boppart SA. Biomechanical properties of in vivo human skin from dynamic optical coherence elastography. IEEE Trans Biomed Eng, 2010, 57(4): 953-959.
|
43. |
Srivastava A, Verma Y, Rao KD, et al. Determination of elastic properties of resected human breast tissue samples using optical coherence tomographic elastography. Strain, 2011, 47(1): 75-87.
|
44. |
Faber DJ, Mik EG, Aalders MC, et al. Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography. Opt Lett, 2003, 28(16): 1436-1438.
|
45. |
Faber DJ, Mik EG, Aalders MC, et al. Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography. Opt Lett, 2005, 30(9): 1015-1017.
|
46. |
Graf RN, Robles FE, Chen X, et al. Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations. J Biomed Opt, 2009, 14(6): 064030.
|
47. |
Fleming CP, Eckert J, Halpern EF, et al. Depth resolved detection of lipid using spectroscopic optical coherence tomography. Biomed Opt Express, 2013, 4(8): 1269-1284.
|