1. |
McCombs RP, MacMahon HE. Dermatomyositis associates with metastasizing bronchogenic carcinoma; a clinicopathological conference. Med Clin North Am, 1947, 31(5): 1148-1162.
|
2. |
Krolikowska W, Pawlikowski M, Prusinski A, et al. A case of non specific myopathy with characteristics of necrotizing myopathy. Neurol Neurochir Psychiatr Pol, 1963, 13: 365-367.
|
3. |
Emslie-Smith AM, Engel AG. Necrotizing myopathy with pipestem capillaries, microvascular deposition of the complement membrane attack complex (MAC), and minimal cellular infiltration. Neurology, 1991, 41(6): 936-939.
|
4. |
Allenbach Y, Mammen AL, Benveniste O, et al. 224th ENMC International Workshop: Clinico-sero-pathological classification of immune-mediated necrotizing myopathies Zandvoort, The Netherlands, 14-16 October 2016. Neuromuscul Disord, 2018, 28(1): 87-99.
|
5. |
Kishi T, Rider LG, Pak K, et al. Association of anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase autoantibodies with DRB1*07:01 and severe myositis in juvenile myositis patients. Arthritis Care Res (Hoboken), 2017, 69(7): 1088-1094.
|
6. |
SEARCH Collaborative Group, Link E, Parish S, et al. SLCO1B1 variants and stain induced myopathy: a genome wide study. N Engl J Med, 2008, 359(8): 789-799.
|
7. |
Patel J, Superko HR, Martin SS, et al. Genetic and immunologic susceptibility to statin-related myopathy. Atherosclerosis, 2015, 240(1): 260-271.
|
8. |
Thompson PD, Panza G, Zaleski A, et al. Statin-associated side effects. JACC, 2016, 67(20): 2359-2410.
|
9. |
Muntean DM, Thompson PD, Catapano AL, et al. Statin-associated myopathy and the quest for biomarkers: can we effectively predict statin-associated muscle symptoms?. Drug Discov Today, 2017, 22(1): 85-96.
|
10. |
Leff RL, Burgess SH, Miller FW, et al. Distinct seasonal patterns in the onset of adult idiopathic inflammatory athy in patients with anti-Jo-1 and anti-signal recognition particle autoa-ntibodies. Arthritis Rheum, 1991, 34(11): 1391-1396.
|
11. |
Allenbach Y, Keraen J, Bouvier AM, et al. High risk of cancer in autoimmune necrotizing myopathies: usefulness of myositis specific antibody. Brain, 2016, 139(8): 2131-2135.
|
12. |
Christopher-Stine L, Casciola RL, Hong G, et al. A Noel autoantibody recognizing 200-kd and 100-kd proteins is associate-ed with an immune-mediated necrotizing myopathy. Arthritis Rheum, 2010, 62(9): 2757-2766.
|
13. |
Mammen AL, Chung T, Christopher-Stine L, et al. Autoantibodies against 3-hydroxy-3-methylglutaryl-coenzyme A reductase in patients with statin-associated autoimmune myopathy. Arthritis Rheum, 2011, 63(3): 713-721.
|
14. |
Istvan ES, Palnitkar M, Buchanan SK, et al. Crystal structure of the catalytic portion of human HMG-CoA reductase: insights into regulation of activity and catalysis. EMBO J, 2000, 19(5): 819-830.
|
15. |
Brown MS, Faust JR, Goldstein JL, et al. Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive inhibitor of the reductase. J Biol Chem, 1978, 253(4): 1121-1128.
|
16. |
Nakanishi M, Goldstein JL, Brown MS, et al. Multivalent control of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Mevalon-ate-derived product inhibits translation of mRNA and accelerates degradation of enzyme. J Biol Chem, 1988, 263(18): 8929-8937.
|
17. |
Morikawa S, Murakami T, Yamazaki H, et al. Analysis of the global RNA expression profiles of skeletal muscle cells treated with statins. J Atheroscler Thromb, 2005, 12(3): 121-131.
|
18. |
Joseph CG, Darrah E, Shah AA, et al. Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science, 2014, 343(6167): 152-157.
|
19. |
Arouche-Delaperche L, Allenbach Y, Amelin D, et al. Pathogenic role of anti-signal recognition protein and anti-3-hydroxy-3-met-hylglutaryl CoA reductase antibodies in necrotizing myopathies: myofiber atrophy and impairment of muscle regeneration in necrotizeng autoimmune myopathies. Ann Neurol, 2017, 81(4): 538-548.
|
20. |
Allenbach Y, Arouche-Delaperche L, Preusse C, et al. Necrosis in anti-SRP+ and anti-HMGCR+ myopathies: role of autoantibodies and complement. Neurology, 2018, 90(6): e507-e517.
|
21. |
Reeves WH, Nigam SK, Blobel G. Human autoantibodies reactive with the signal-recognition particle. Proc Natl Acad Sci USA, 1986, 83(24): 9507-9511.
|
22. |
Miller T, Al-Lozi MT, Lopate G, et al. Myopathy with antibodies to the signal recognition particle: clinical and pathological features. J Neurol Neurosurg Psychiatry, 2002, 73(4): 420-428.
|
23. |
汪茜, 蒲传强. 抗信号识别颗粒抗体阳性坏死性肌病研究进展. 国际神经病学神经外科学杂志, 2013, 40(4): 359-362.
|
24. |
Römisch K, Miller FW, Dobberstein B, et al. Human autoantibodies against the 54 kDa protein of the signal recognition particle block function at multiple stages. Arthritis Res Ther, 2006, 8(2): R39.
|
25. |
Racanelli V, Prete M, Musaraj G, et al. Autoantibodies to intracellular antigens: generation and pathogenetic role. Autoimmun Rev, 2011, 10(8): 503-508.
|
26. |
Rojana-Udomsart A, Mitrpant C, Bundell C, et al. Complement-mediated muscle cell lysis: a possible mechanism of myonecrosis in anti-SRP associated necrotizing myopathy (ASANM). J Neuroimmunol, 2013, 264(1/2): 65-70.
|
27. |
Chung T, Christopher-Stine L, Paik JJ, et al. The composition of cellular infiltrates in anti-HMG-CoA reductase-associated myopathy. Muscle Nerve, 2015, 52(2): 189-195.
|
28. |
Saclier M, Yacoub-Youssef H, Mackey AL, et al. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration. Stem Cells, 2013, 31(2): 384-396.
|
29. |
Knauβ S, Allenbach Y, Preuße C, et al. PD1 and PDL2axis confers T cell exhaustion in anti-SRP+ and anti-HMGCR+ myopathies. Neuromuscular Disorders, 2017(2017): S96-S249.
|
30. |
Luo SL, Xie YG, Li Z, et al. Ecadherin expression and prognosis of oral cancer: a meta-analysis. Tumour Biol, 2014, 35(6): 5533-5537.
|
31. |
许静, 蒲传强, 石强, 等. 高迁移率族蛋白 1 在免疫性坏死性肌病的发病机制作用//中华医学会第十七次全国神经病学学术会议论文汇编, 北京: 中华医学会, 2014: 132.
|
32. |
Wan ZM, Zhang XJ, Peng AP, et al. TLR4-HMGB1 signaling pathway affects the inflammatory reaction of autoimmune myositis by regulating MHC-I. Int Immunopharmacol, 2016, 41(41): 74-81.
|
33. |
张媛, 丁树哲. 运动性骨骼肌内质网应激与线粒体功能调控. 中国体育科技, 2017, 53(4): 91-96.
|
34. |
Li CK, Knopp P, Moncrieffe H, et al. Overexpression of MHC class Ⅰ heavy chain protein in young skeletal muscle leads to severe myositis: implications for juvenile myositis. Am J Pathol, 2009, 175(3): 1030-1040.
|
35. |
Needham M, Fabian V, Knezevic W, et al. Progressive myopathy with upregulation of MHC-Ⅰ associated with statin therapy. Neuromuscul Disord, 2006, 17(2): 194-200.
|
36. |
Lemasters JJ. Selective mitochondrial autophagy, or mitophagy as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res, 2005, 8(1): 3-5.
|
37. |
Matsubara S, Bokuda K, Asano Y, et al. Mitophagy in three cases of immune-mediated necrotizing myopathy associated with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase autoantibodies: ultrastructural and immune-histochemical studies. Neuromuscul Disord, 2018, 28(3): 283-288.
|
38. |
Nogalska A, D’Agostino C, Terracciano C. Impaired autophagy in sporadic inclusion-body myositis and in endoplasmic reticulum stress-provoked cultured human muscle fibers. Am J Pathol, 2010, 177(3): 1377-1387.
|
39. |
Egerer T, Martinez-Gamboa L, Dankof A, et al. Tissue-specific up-regulation of the proteasome subunit beta5i (LMP7) in Sjögren’s syndrome. Arthritis Rheum, 2006, 54(5): 1501-1508.
|
40. |
Krause S, Kuckelkorn U, Dornri T, et al. Immuno-proteasome subunit L-MP2 expression is deregulated in Sjogren’s syndrome but not in other autoimmune disorders. Ann Rheum Dis, 2005, 65(8): 1021-1027.
|
41. |
李珍, 罗玉凤, 曹金伶, 等. 免疫蛋白酶体亚基在干燥综合征唇腺中的表达. 中国医学科学院学报, 2011, 33(2): 146-150, 220.
|
42. |
Bhattarai S, Ghannam K, Krause S, et al. The immunoproteasomes are key to regulate myokines and MHC class Ⅰ expression in idiopathic inflammatory myopathies. J Autoimmun, 2016, 75: 118-129.
|