1. |
van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol, 2010, 20(8): 519-534.
|
2. |
Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med, 1995, 34(4): 537-541.
|
3. |
Cataldi M, Avoli M, de Villers-Sidani E. Resting state networks in temporal lobe epilepsy. Epilepsia, 2013, 54(12): 2048-2059.
|
4. |
Wei H, An J, Shen H, et al. Altered effective connectivity among core neurocognitive networks in idiopathic generalized epilepsy: an fMRI evidence. Front Hum Neurosci, 2016, 10: 447.
|
5. |
Logothetis NK, Pauls J, Augath M, et al. Neurophysiological investigation of the basis of the fMRI signal. Nature, 2001, 412(6843): 150-157.
|
6. |
Yang H, Long XY, Yang Y, et al. Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. Neuroimage, 2007, 36(1): 144-152.
|
7. |
Waites AB, Briellmann RS, Saling MM, et al. Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann Neurol, 2006, 59(2): 335-343.
|
8. |
Cheng L, Zhu Y, Sun J, et al. Principal states of dynamic functional connectivity reveal the link between resting-state and task-state brain: an fMRI study. Int J Neural Syst, 2018, 28(7): 1850002.
|
9. |
Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci, 2008, 1124: 1-38.
|
10. |
Hu CY, Gao X, Long L, et al. Altered DMN functional connectivity and regional homogeneity in partial epilepsy patients: a seventy cases study. Oncotarget, 2017, 8(46): 81475-81484.
|
11. |
Burianová H, Faizo NL, Gray M, et al. Altered functional connectivity in mesial temporal lobe epilepsy. Epilepsy Res, 2017, 137: 45-52.
|
12. |
Liao W, Zhang Z, Pan Z, et al. Default mode network abnormalities in mesial temporal lobe epilepsy: a study combining fMRI and DTI. Hum Brain Mapp, 2011, 32(6): 883-895.
|
13. |
Zhang Z, Lu G, Zhong Y, et al. Altered spontaneous neuronal activity of the default-mode network in mesial temporal lobe epilepsy. Brain Res, 2010, 1323: 152-160.
|
14. |
Haneef Z, Lenartowicz A, Yeh HJ, et al. Effect of lateralized temporal lobe epilepsy on the default mode network. Epilepsy Behav, 2012, 25(3): 350-357.
|
15. |
Pittau F, Grova C, Moeller F, et al. Patterns of altered functional connectivity in mesial temporal lobe epilepsy. Epilepsia, 2012, 53(6): 1013-1023.
|
16. |
Pereira FR, Alessio A, Sercheli MS, et al. Asymmetrical hippocampal connectivity in mesial temporal lobe epilepsy: evidence from resting state fMRI. BMC Neurosci, 2010, 11: 66.
|
17. |
Peng W, Mao L, Yin D, et al. Functional network changes in the hippocampus contribute to depressive symptoms in epilepsy. Seizure, 2018, 60: 16-22.
|
18. |
Kemmotsu N, Kucukboyaci NE, Leyden KM, et al. Frontolimbic brain networks predict depressive symptoms in temporal lobe epilepsy. Epilepsy Res, 2014, 108(9): 1554-1563.
|
19. |
de Kwaasteniet B, Ruhe E, Caan M, et al. Relation between structural and functional connectivity in major depressive disorder. Biol Psychiatry, 2013, 74(1): 40-47.
|
20. |
Li R, Ji GJ, Yu YY, et al. Epileptic discharge related functional connectivity within and between networks in benign epilepsy with centrotemporal spikes. Int J Neural Syst, 2017, 27(7, SI): 1750018.
|
21. |
Zang Y, Jiang T, Lu Y, et al. Regional homogeneity approach to fMRI data analysis. Neuroimage, 2004, 22(1): 394-400.
|
22. |
Wang ZG, Lu GM, Zhang ZQ, et al. Altered resting state networks in epileptic patients with generalized tonic-clonic seizures. Brain Res, 2011, 1374: 134-141.
|
23. |
Henson RN, Greve A, Cooper E, et al. The effects of hippocampal lesions on MRI measures of structural and functional connectivity. Hippocampus, 2016, 26(11): 1447-1463.
|
24. |
Campo P, Garrido MI, Moran RJ, et al. Remote effects of hippocampal sclerosis on effective connectivity during working memory encoding: a case of connectional diaschisis?. Cereb Cortex, 2012, 22(6): 1225-1236.
|
25. |
Seeley WW, Menon V, Schatzberg AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci, 2007, 27(9): 2349-2356.
|
26. |
Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct, 2010, 214(5/6): 655-667.
|
27. |
Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA, 2005, 102(27): 9673-9678.
|
28. |
Luo C, Yang T, Tu S, et al. Altered intrinsic functional connectivity of the salience network in childhood absence epilepsy. J Neurol Sci, 2014, 339(1/2): 189-195.
|
29. |
Zhang C, Yang H, Qin W, et al. Characteristics of resting-state functional connectivity in intractable unilateral temporal lobe epilepsy patients with impaired executive control function. Front Hum Neurosci, 2017, 11: 609.
|
30. |
Curtis CE, D’Esposito M. Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci, 2003, 7(9): 415-423.
|
31. |
Vlooswijk MC, Jansen JF, Jeukens CR, et al. Memory processes and prefrontal network dysfunction in cryptogenic epilepsy. Epilepsia, 2011, 52(8): 1467-1475.
|
32. |
Yang H, Zhang C, Liu C, et al. Brain network alteration in patients with temporal lobe epilepsy with cognitive impairment. Epilepsy Behav, 2018, 81: 41-48.
|
33. |
Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci, 2002, 3(3): 201-215.
|
34. |
Andrews-Hanna JR, Smallwood J, Spreng RN. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann N Y Acad Sci, 2014, 1316: 29-52.
|
35. |
Spreng RN, Sepulcre J, Turner GR, et al. Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J Cogn Neurosci, 2012, 25(1): 74-86.
|
36. |
Fox MD, Corbetta M, Snyder AZ, et al. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA, 2006, 103(26): 10046-10051.
|
37. |
Zhang Z, Lu G, Zhong Y, et al. Impaired attention network in temporal lobe epilepsy: a resting FMRI study. Neurosci Lett, 2009, 458(3): 97-101.
|
38. |
Zheng J, Qin B, Dang C, et al. Alertness network in patients with temporal lobe epilepsy: a fMRI study. Epilepsy Res, 2012, 100(1/2): 67-73.
|
39. |
Sturm W, Longoni F, Fimm B, et al. Network for auditory intrinsic alertness: a PET study. Neuropsychologia, 2004, 42(5): 563-568.
|
40. |
Li J, Chen X, Ye W, et al. Alteration of the alertness-related network in patients with right temporal lobe epilepsy: a resting state fMRI study. Epilepsy Res, 2016, 127: 252-259.
|
41. |
Xuan B, Mackie MA, Spagna A, et al. The activation of interactive attentional networks. Neuroimage, 2016, 129: 308-319.
|
42. |
Xiao F, Li L, An D, et al. Altered attention networks in benign childhood epilepsy with centrotemporal spikes (BECTS): a resting-state fMRI study. Epilepsy Behav, 2015, 45: 234-241.
|
43. |
Cubillo A, Halari R, Smith A, et al. A review of fronto-striatal and fronto-cortical brain abnormalities in children and adults with Attention Deficit Hyperactivity Disorder (ADHD) and new evidence for dysfunction in adults with ADHD during motivation and attention. Cortex, 2012, 48(2): 194-215.
|
44. |
Gao Y, Zheng J, Li Y, et al. Decreased functional connectivity and structural deficit in alertness network with right-sided temporal lobe epilepsy. Medicine (Baltimore), 2018, 97(14): e0134.
|
45. |
Tomasi D, Volkow ND. Resting functional connectivity of language networks: characterization and reproducibility. Mol Psychiatry, 2012, 17(8): 841-854.
|
46. |
Vlooswijk MC, Jansen JF, Majoie HJ, et al. Functional connectivity and language impairment in cryptogenic localization-related epilepsy. Neurology, 2010, 75(5): 395-402.
|
47. |
McGinnity CJ, Smith AB, Yaakub SN, et al. Decreased functional connectivity within a language subnetwork in benign epilepsy with centrotemporal spikes. Epilepsia Open, 2017, 2(2): 214-225.
|
48. |
Gong L, Yin Y, He C, et al. Disrupted reward circuits is associated with cognitive deficits and depression severity in major depressive disorder. J Psychiatr Res, 2017, 84: 9-17.
|
49. |
Downar J, Geraci J, Salomons TV, et al. Anhedonia and reward-circuit connectivity distinguish nonresponders from responders to dorsomedial prefrontal repetitive transcranial magnetic stimulation in major depression. Biol Psychiatry, 2014, 76(3): 176-185.
|
50. |
Doucet GE, Skidmore C, Sharan AD, et al. Functional connectivity abnormalities vary by amygdala subdivision and are associated with psychiatric symptoms in unilateral temporal epilepsy. Brain Cogn, 2013, 83(2): 171-182.
|
51. |
Lee MH, Smyser CD, Shimony JS. Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol, 2013, 34(10): 1866-1872.
|
52. |
Tran SM, McGregor KM, James GA, et al. Task-residual functional connectivity of language and attention networks. Brain Cogn, 2018, 122: 52-58.
|