1. |
Li HL, Xu H, Li YL, et al. Epidemiology of traumatic spinal cord injury in Tianjin, China: an 18-year retrospective study of 735 cases. J Spinal Cord Med, 2018: 1-13.
|
2. |
White BAB, Dea N, Street JT, et al. The economic burden of urinary tract infection and pressure ulceration in acute traumatic spinal cord injury admissions: evidence for comparative economics and decision analytics from a matched case-control study. J Neurotrauma, 2017, 34(20): 2892-2900.
|
3. |
Murray LM, Tahayori B, Knikou M. Transspinal direct current stimulation produces persistent plasticity in human motor pathways. Sci Rep, 2018, 8(1): 717.
|
4. |
Gunduz A, Rothwell J, Vidal J, et al. Non-invasive brain stimulation to promote motor and functional recovery following spinal cord injury. Neural Regen Res, 2017, 12(12): 1933-1938.
|
5. |
Estes SP, Iddings JA, Field-Fote EC. Priming neural circuits to modulate spinal reflex excitability. Front Neurol, 2017, 8: 17.
|
6. |
Yamaguchi T, Fujiwara T, Tsai YA, et al. The effects of anodal transcranial direct current stimulation and patterned electrical stimulation on spinal inhibitory interneurons and motor function in patients with spinal cord injury. Exp Brain Res, 2016, 234(6): 1469-1478.
|
7. |
Kirshblum S, Didesch M, Botticello A, et al. Patient preferences for order of the sensory portion of the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) examination. J Spinal Cord Med, 2019: 1-6.
|
8. |
Cortes M, Medeiros AH, Gandhi A, et al. Improved grasp function with trancranial direct current sitmulaiton in chronic spinal cord injury. NeuroRehabilitaion, 2017, 41(1): 51-59.
|
9. |
Wecht JM, Weir JP, Katzelnick CG, et al. Systemic and cerebral hemodynamic contribution to cognitive performance in spinal cord injury. J Neurotraum, 2018, 35(24): 2957-2964.
|
10. |
Nakhjavan-Shahraki B, Yousefifard M, Rahimi-Movaghar V, et al. Transplantation of olfactory ensheathing cells on functional recovery and neuropathic pain after spinal cord injury; systematic review and meta-analysis. Sci Rep, 2018, 8(1): 325.
|
11. |
Gazdic M, Volarevic V, Harrell CR, et al. Stem cells therapy for spinal cord injury. Int J Mol Sci, 2018, 19(4): 1039.
|
12. |
杨云, 许光旭. 脊髓损伤的临床康复进展. 华西医学, 2018, 33(10): 1303-1310.
|
13. |
张嘉祺, 廖伶艺, 杨福, 等. 重复性经颅磁刺激用于脊髓损伤康复的研究进展. 华西医学, 2017, 32(10): 1624-1628.
|
14. |
Fridriksson J, Basilakos A, Stark BC, et al. Transcranial direct current stimulation to treat aphasia: longitudinal analysis of a randomized controlled trial. Brain Stimul, 2019, 12(1): 190-191.
|
15. |
Fiori V, Kunz L, Kuhnke P, et al. Transcranial direct current stimulation (tDCS) facilitates verb learning by altering effective connectivity in the healthy brain. Neuroimage, 2018, 181: 550-559.
|
16. |
Martin DM, Moffa A, Nikolin S, et al. Cognitive effects of transcranial direct current stimulation treatment in patients with major depressive disorder: an individual patient data meta-analysis of randomised, sham-controlled trials. Neurosci Biobehav Rev, 2018, 90: 137-145.
|
17. |
Mally J, Stone TW, Sinkó G, et al. Long term follow-up study of non-invasive brain stimulation (NBS) (rTMS and tDCS) in Parkinson’s disease (PD). Strong age-dependency in the effect of NBS. Brain Res Bull, 2018, 142: 78-87.
|
18. |
Fridriksson J, Elm J, Stark BC, et al. BDNF genotype and tDCS interaction in aphasia treatment. Brain Stimul, 2018, 11(6): 1276-1281.
|
19. |
Cortes M, Medeiros AH, Gandhi A, et al. Improved grasp function with transcranial direct current stimulation in chronic spinal cord injury. NeuroRehabilitation, 2017, 41(1): 51-59.
|
20. |
龙海波, 廖建平, 冯大雄, 等. 颈脊髓损伤患者应用体感诱发电位监测的价值. 华西医学, 2013, 28(3): 356-360.
|