1. |
Afonina ZA, Myasnikov AG, Shirokov VA, et al. Formation of circular polyribosomes on eukaryotic mRNA without cap-structure and poly(A)-tail: a cryo electron tomography study. Nucleic Acids Res, 2014, 42(14): 9461-9469.
|
2. |
Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA, 1976, 73(11): 3852-3856.
|
3. |
Cocquerelle C, Mascrez B, Hétuin D, et al. Mis-splicing yields circular RNA molecules. FASEB J, 1993, 7(1): 155-160.
|
4. |
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013, 19(2): 141-157.
|
5. |
Salzman J, Gawad C, Wang PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One, 2012, 7(2): e30733.
|
6. |
Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression. PLoS Genet, 2013, 9(9): e1003777.
|
7. |
Ivanov A, Memczak S, Wyler E, et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep, 2015, 10(2): 170-177.
|
8. |
Wang Y, Tian J, Wang S. The potential therapeutic role of myeloid-derived suppressor cells in autoimmune arthritis. Semin Arthritis Rheum, 2016, 45(4): 490-495.
|
9. |
Wang SJ, Shi Y, Yang M, et al. Glucocorticoid-Induced tumor necrosis factor receptor family-related protein exacerbates collagen-induced arthritis by enhancing the expansion of Th17 cells. Am J Pathol, 2012, 180(3): 1059-1067.
|
10. |
Burd CE, Jeck WR, Liu Y, et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet, 2010, 6(12): e1001233.
|
11. |
Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Res, 2013, 73(18): 5609-5612.
|
12. |
Li F, Zhang L, Li W, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget, 2015, 6(8): 6001-6013.
|
13. |
Zheng J, Li Z, Wang T, et al. Microarray expression profile of circular RNAs in plasma from primary biliary cholangitis patients. Cell Physiol Biochem, 2017, 44(4): 1271-1281.
|
14. |
Cardamone G, Paraboschi EM, Rimoldi V, et al. The characterization of GSDMB splicing and backsplicing profiles identifies novel isoforms and a circular RNA that are dysregulated in multiple sclerosis. Int J Mol Sci, 2017, 18(3): 576.
|
15. |
Andreeva K, Ngf C. Circular RNAs: new players in gene regulation. Adv Biosci Biotechnol, 2015, 6(6): 433-441.
|
16. |
Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. CircRNA biogenesis competes with pre-mRNA splicing. Mol Cell, 2014, 56(1): 55-66.
|
17. |
Kelly S, Greenman C, Cook PR, et al. Exon skipping is correlated with Exon circularization. J Mol Biol, 2015, 427(15): 2414-2417.
|
18. |
Li Z, Huang C, Bao C, et al. Corrigendum: exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol, 2017, 24(2): 194-194.
|
19. |
Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs. Mol Cell, 2013, 51(6): 792-806.
|
20. |
Rodríguez-Trelles F, Tarrío R, Ayala FJ. Origins and evolution of spliceosomal introns. Annu Rev Genet, 2006, 40(1): 47-76.
|
21. |
Zhang XO, Wang HB, Zhang Y, et al. Complementary sequence-mediated exon circularization. Cell, 2014, 159(1): 134-147.
|
22. |
Hansen TB, Wiklund ED, Bramsen JB, et al. miRNA-dependent gene silencing involving ago2-mediated cleavage of a circular antisense RNA. EMBO J, 2011, 30(21): 4414-4422.
|
23. |
Piwecka M, Glazar P, Hernandez-Miranda LR, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science, 2017, 357(6357): eaam8526.
|
24. |
Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?. Cell, 2011, 146(3): 353-358.
|
25. |
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441): 333-338.
|
26. |
Bai Y, Zhang Y, Han B, et al. Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity. J Neurosci, 2018, 38(1): 32-50.
|
27. |
李祯祺, 苏燕, 许丽, 等. 非编码RNA研究国际发展态势分析. 科学观察, 2015(5): 1-14.
|
28. |
肖时曦, 王涛. 环状RNA的研究进展. 岭南现代临床外科, 2017(1): 122-127.
|
29. |
Zheng QP, Bao CY, Guo WJ, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun, 2016, 7: 11215.
|
30. |
Tao H, Xiong Q, Zhang F, et al. Circular RNA profiling reveals chi_circ_0008219 function as microRNA sponges in pre-ovulatory ovarian follicles of goats (Capra hircus). Genomics, 2018, 111(4): 257-266.
|
31. |
Zhang H, Wang G, Ding C, et al. Increased circular RNA UBAP2 acts as a sponge of miR-143topromote osteosarcoma progression. Oncotarget, 2017, 8(37): 61687-61697.
|
32. |
Yin QF, Yang L, Zhang Y, et al. Long noncoding RNAs with snoRNA ends. Mol Cell, 2012, 48(2): 219-230.
|
33. |
Danan M, Schwartz S, Edelheit S, et al. Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Res, 2011, 40(7): 3131-3142.
|
34. |
Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science, 1995, 268(5209): 415-417.
|
35. |
Perriman R, Ares M. Circular mRNA can direct translation of extremely long repeating-sequence proteins in vivo. RNA, 1998, 4(9): 1047-1054.
|
36. |
Abe N, Matsumoto K, Nishihara M, et al. Rolling circle translation of circular RNA in living human cells. Sci Rep, 2015, 5: 16435.
|
37. |
Yang Y, Fan XJ, Mao MW, et al. Extensive translation of circular RNAs driven by N-6-methyladenosine. Cell Res, 2017, 27(5): 626-641.
|
38. |
Wang Y, Wang ZF. Efficient backsplicing produces translatable circular mRNAs. RNA, 2015, 21(2): 172-179.
|
39. |
Li B, Li N, Zhang L, et al. Hsa_circ_0001859 regulates ATF2 expression by functioning as an MiR-204/211 sponge in human rheumatoid arthritis. J Immunol Res, 2018, 2018: 1-8.
|
40. |
Ouyang Q, Wu J, Jiang Z, et al. Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from rheumatoid arthritis patients. Cell Physiol Biochem, 2017, 42(2): 651-659.
|
41. |
Zheng F, Yu X, Huang J, et al. Circular RNA expression profiles of peripheral blood mononuclear cells in rheumatoid arthritis patients, based on microarray chip technology. Mol Med Rep, 2017, 16(6): 8029-8036.
|
42. |
Tang XY, Wang JM, Xia X, et al. Elevated expression of ciRS-7 in peripheral blood mononuclear cells from rheumatoid arthritis patients. Diagn Pathol, 2019, 14(1): 11.
|
43. |
杨旋, 张梦洁, 张蓓. 高通量测序分析类风湿关节炎患者外周血单个核细胞circRNAs表达谱差异. 免疫学杂志, 2019, 35(3): 262-268.
|
44. |
宋新强, 张丽丽, 赵仕琪, 等. 类风湿关节炎患者外周血环状RNA表达谱研究. 中华风湿病学杂志, 2016, 20(8): 541-546.
|
45. |
Luo Q, Zhang L, Li X, et al. Identification of circular RNAs hsa_circ_0044235 in peripheral blood as novel biomarkers for rheumatoid arthritis. Clin Exp Immunol, 2018, 194(1): 118-124.
|
46. |
Nie ZZ, Stanley KT, Stauffer S, et al. AGAP1, an endosome-associated, phosphoinositide-dependent ADP-ribosylation factor GTPase-activating protein that affects actin cytoskeleton. J Biol Chem, 2002, 277(50): 48965-48975.
|
47. |
Peters M, Vis M, van Halm VP, et al. Changes in lipid profile during infliximab and corticosteroid treatment in rheumatoid arthritis. Ann Rheum Dis, 2007, 66(7): 958-961.
|
48. |
Skogsberg J, Lundstrom J, Kovacs AA, et al. Transcriptional profiling uncovers a network of cholesterol-responsive atherosclerosis target genes. PLoS Genet, 2008, 4(3): e1000036.
|
49. |
Boden G. Obesity and free fatty acids. Endocrinol Metab Clin North Am, 2008, 37(3): 635-646.
|
50. |
Pincus T, Sokka T, Wolfe F. Premature mortality in patients with rheumatoid arthritis: evolving concepts. Arthritis Rheum, 2001, 44(6): 1234-1236.
|
51. |
Sheng YJ, Gao JP, Li J, et al. Follow-up study identifies two novel susceptibility loci PRKCB and 8p11.21 for systemic lupus erythematosus. Rheumatology (Oxford), 2011, 51(4): 682-688.
|
52. |
Han D, Li J, Wang H, et al. Circular RNA MTO1 acts as the sponge of miR-9 to suppress hepatocellular carcinoma progression. Hepatology, 2017, 66(4): 1151-1164.
|