1. |
Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer, 2019, 144(8): 1941-1953.
|
2. |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA CancerJ Clin, 2017, 67(1): 7-30.
|
3. |
Lauby-Secretan B, Scoccianti C, Loomis D, et al. Body fatness and cancer--viewpoint of the IARC working group. N Engl J Med, 2016, 375(8): 794-798.
|
4. |
de Roon M, May AM, McTiernan A, et al. Effect of exercise and/or reduced calorie dietary interventions on breast cancer-related endogenous sex hormones in healthy postmenopausal women. Breast Cancer Res, 2018, 20(1): 81.
|
5. |
Weng YI, Huang TH, Yan PS. Methylated DNA immunoprecipitation and microarray-based analysis: detection of DNA methylation in breast cancer cell lines. Methods Mol Biol, 2009, 590: 165-176.
|
6. |
Fleming AM, Ding Y, Burrows CJ. Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair. Proc Natl Acad Sci USA, 2017, 114(10): 2604-2609.
|
7. |
Jasin M. Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene, 2002, 21(58): 8981-8993.
|
8. |
Eidsaa M, Stubbs L, Almaas E. Comparative analysis of weighted gene co-expression networks in human and mouse. PLoS One, 2017, 12(11): e0187611.
|
9. |
Yang CW, Wang SF, Yang XL, et al. Identification of gene expression models for laryngeal squamous cell carcinoma using co-expression network analysis. Medicine (Baltimore), 2018, 97(7): e9738.
|
10. |
Wan Q, Tang J, Han Y, et al. Co-expression modules construction by WGCNA and identify potential prognostic markers of uveal melanoma. Exp Eye Res, 2018, 166: 13-20.
|
11. |
Miao L, Yin RX, Pan SL, et al. Weighted gene co-expression network analysis identifies specific modules and hub genes related to hyperlipidemia. Cell Physiol Biochem, 2018, 48(3): 1151-1163.
|
12. |
Tian F, Zhao J, Fan X, et al. Weighted gene co-expression network analysis in identification of metastasis-related genes of lung squamous cell carcinoma based on the cancer genome atlas database. J Thorac Dis, 2017, 9(1): 42-53.
|
13. |
Yu K, Ganesan K, Tan LK, et al. A precisely regulated gene expression cassette potently modulates metastasis and survival in multiple solid cancers. PLoS Genet, 2008, 4(7): e1000129.
|
14. |
吴斌, 沈自尹. 基因芯片表达谱数据的预处理分析. 中国生物化学与分子生物学报, 2006, 22(4): 272-277.
|
15. |
Bolstad BM, Irizarry RA, Astrand M, et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 2003, 19(2): 185-193.
|
16. |
Barabási AL, Dezső Z, Ravasz E, et al. Scale-free and hierarchical structures in complex networks. AIP Conference Proceedings, 2003, 66(1).
|
17. |
Barabási AL, Bonabeau E. Scale-free networks. Sci Am, 2003, 288(5): 60-69.
|
18. |
Ravasz E, Somera AL, Mongru DA, et al. Hierarchical organization of modularity in metabolic networks. Science, 2002, 5586(297): 1551-1555.
|
19. |
Segal E, Shapira M, Regev A, et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet, 2003, 34(2): 166-176.
|
20. |
Dong J, Horvath S. Understanding network concepts in modules. BMC Syst Biol, 2007, 1: 24.
|
21. |
Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25(1): 25-29.
|
22. |
Kanehisa M, Furumichi M, Tanabe M. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res, 2017, 45(D1): D353-D361.
|
23. |
Najafi M, Farhood B, Mortezaee K. Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem, 2019, 120(3): 2782-2790.
|
24. |
Komemi O, Shochet GE, Pomeranz M, et al. Placenta-conditioned extracellular matrix (ECM) activates breast cancer cell survival mechanisms: a key for future distant metastases. Int J Cancer, 2019, 144(7): 1633-1644.
|
25. |
Wagner M, Koyasu S. Cancer immunoediting by innate lymphoid cells. Trends Immunol, 2019, 40(5): 415-430.
|
26. |
Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity, 2019, 50(4): 924-940.
|
27. |
Brandt J, Borgquist S, Almquist M, et al. Thyroid function and survival following breast cancer. Br J Surg, 2016, 103(12): 1649-1657.
|
28. |
Brandt J, Borgquist S, Manjer J. Prospectively measured thyroid hormones and thyroid peroxidase antibodies in relation to risk of different breast cancer subgroups: a malmö diet and cancer study. Cancer Causes Control, 2015, 26(8): 1093-1104.
|
29. |
Davis PJ, Mousa SA, Cody V, et al. Small molecule hormone or hormone-like ligands of integrin αVβ3: implications for cancer cell behavior. Horm Cancer, 2013, 4(6): 335-342.
|
30. |
Moeller LC, Führer D. Thyroid hormone, thyroid hormone receptors, and cancer: a clinical perspective. Endocr Relat Cancer, 2013, 20(2): R19-R29.
|
31. |
Ferreira E, da Silva AE, Serakides R. Ehrlich tumor as model to study artificial hyperthyroidism influence on breast cancer. Pathol Res Pract, 2007, 203(1): 39-44.
|
32. |
Gago-Dominguez M, Castelao JE. Role of lipid peroxidation and oxidative stress in the association between thyroid diseases and breast cancer. Crit Rev Oncol Hematol, 2008, 68(2): 107-114.
|