1. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
2. |
National Lung Screening Trial Research Team, Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med, 2011, 365(5): 395-409.
|
3. |
Henschke CI, Shaham D, Yankelevitz DF, et al. CT screening for lung cancer: significance of diagnoses in its baseline cycle. Clin Imaging, 2006, 30(1): 11-15.
|
4. |
Yousaf-Khan U, van der Aalst C, de Jong PA, et al. Final screening round of the NELSON lung cancer screening trial: the effect ofa 2.5-year screening interval. Thorax, 2017, 72(1): 48-56.
|
5. |
Pastorino U, Silva M, Sestini S, et al. Prolonged lung cancer screening reduced 10-year mortality in the MILD trial: new confirmation of lung cancer screening efficacy. Ann Oncol, 2019, 30(7): 1162-1169.
|
6. |
Boyle P, Chapman CJ, Holdenrieder S, et al. Clinical validation of an autoantibody test for lung cancer. Ann Oncol, 2011, 22(2): 383-389.
|
7. |
Massion PP, Healey GF, Peek LJ, et al. Autoantibody signature enhances the positive predictive power of computed tomography and nodule-based risk models for detection of lung cancer. J Thorac Oncol, 2017, 12(3): 578-584.
|
8. |
Chapman CJ, Murray A, McElveen JE, et al. Autoantibodies in lung cancer: possibilities for early detection and subsequent cure. Thorax, 2008, 63(3): 228-233.
|
9. |
Ajona D, Pajares MJ, Corrales L, et al. Investigation of complement activation product c4d as a diagnostic and prognostic biomarker for lung cancer. J Natl Cancer Inst, 2013, 105(18): 1385-1393.
|
10. |
Ajona D, Okrój M, Pajares MJ, et al. Complement C4d-specific antibodies for the diagnosis of lung cancer. Oncotarget, 2018, 9(5): 6346-6355.
|
11. |
Verri C, Borzi C, Holscher T, et al. Mutational profile from targeted NGS predicts survival in LDCT screening-detected lung cancers. J Thorac Oncol, 2017, 12(6): 922-931.
|
12. |
Sozzi G, Boeri M, Rossi M, et al. Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: a correlative MILD trial study. J Clin Oncol, 2014, 32(8): 768-773.
|
13. |
Sestini S, Boeri M, Marchiano A, et al. Circulating microRNA signature as liquid-biopsy to monitor lung cancer in low-dose computed tomography screening. Oncotarget, 2015, 6(32): 32868-32877.
|
14. |
Jenkins S, Yang JC, Ramalingam SS, et al. Plasma ctDNA analysis for detection of the EGFRT790M mutation in patients with advanced non-small cell lung cancer. J Thorac Oncol, 2017, 12(7): 1061-1070.
|
15. |
Abbosh C, Birkbak NJ, Wilson GA, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature, 2017, 545(7655): 446-451.
|
16. |
Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science, 2018, 359(6378): 926-930.
|
17. |
Blackhall F, Frese KK, Simpson K, et al. Will liquid biopsies improve outcomes for patients with small-cell lung cancer?. Lancet Oncol, 2018, 19(9): e470-e481.
|
18. |
Ilie M, Hofman V, Long-Mira E, et al. “Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. PLoS One, 2014, 9(10): e111597.
|
19. |
Chen YY, Xu GB. Effect of circulating tumor cells combined with negative enrichment and CD45-FISH identification in diagnosis, therapy monitoring and prognosis of primary lung cancer. Med Oncol, 2014, 31(12): 240.
|
20. |
Pan BT, Teng K, Wu C, et al. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol, 1985, 101(3): 942-948.
|
21. |
Li A, Zhang T, Zheng M, et al. Exosomal proteins as potential markers of tumor diagnosis. J Hematol Oncol, 2017, 10(1): 175.
|
22. |
Zhang JT, Qin H, Man Cheung FK, et al. Plasma extracellular vesicle microRNAs for pulmonary ground-glass nodules. J Extracell Vesicles, 2019, 8(1): 1663666.
|
23. |
Li W, Li C, Zhou T, et al. Role of exosomal proteins in cancer diagnosis. Mol Cancer, 2017, 16(1): 145.
|
24. |
Esteller M, Sanchez-Cespedes M, Rosell R, et al. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res, 1999, 59(1): 67-70.
|
25. |
Wielscher M, Vierlinger K, Kegler U, et al. Diagnostic performance of plasma DNA methylation profiles in lung cancer, pulmonary fibrosis and COPD. EBioMedicine, 2015, 2(8): 929-936.
|
26. |
Hulbert A, Jusue-Torres I, Stark A, et al. Early detection of lung cancer using DNA promoter hypermethylation in plasma and sputum. Clin Cancer Res, 2017, 23(8): 1998-2005.
|
27. |
Doseeva V, Colpitts T, Gao G, et al. Performance of a multiplexed dual analyte immunoassay for the early detection of non-small cell lung cancer. J Transl Med, 2015, 13: 55.
|
28. |
Mazzone PJ, Wang XF, Han X, et al. Evaluation of a serum lung cancer biomarker panel. Biomark Insights, 2018: 13.
|
29. |
Molina R, Marrades RM, Augé JM, et al. Assessment of a combined panel of six serum tumor markers for lung cancer. Am J Respir Crit Care Med, 2016, 193(4): 427-437.
|
30. |
Silvestri GA, Tanner NT, Kearney P, et al. Assessment of plasma proteomics biomarker’s ability to distinguish benign from malignant lung nodules: results of the PANOPTIC (pulmonary nodule plasma proteomic classifier) trial. Chest, 2018, 154(3): 491-500.
|
31. |
Meyer MG, Hayenga JW, Neumann T, et al. The Cell-CT 3-dimensional cell imaging technology platform enables the detection of lung cancer using the noninvasive LuCED sputum test. Cancer Cytopathol, 2015, 123(9): 512-523.
|
32. |
Wilbur DC, Meyer MG, Presley C, et al. Automated 3-dimensional morphologic analysis of sputum specimens for lung cancer detection: performance characteristics support use in lung cancer screening. Cancer Cytopathol, 2015, 123(9): 548-556.
|
33. |
Puchades-Carrasco L, Jantus-Lewintre E, Pérez-Rambla C, et al. Serum metabolomic profiling facilitates the non-invasive identification of metabolic biomarkers associated with the onset and progression of non-small cell lung cancer. Oncotarget, 2016, 7(11): 12904-12916.
|
34. |
Mathé EA, Patterson AD, Haznadar M, et al. Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer. Cancer Res, 2014, 74(12): 3259-3270.
|
35. |
Rezola A, Pey J, Rubio Á, et al. In-silico prediction of key metabolic differences between two non-small cell lung cancer subtypes. PLoS One, 2014, 9(8): e103998.
|
36. |
Caiola E, Brunelli L, Marabese M, et al. Different metabolic responses to PI3K inhibition in NSCLC cells harboring wild-type and G12C mutant KRAS. Oncotarget, 2016, 7(32): 51462-51472.
|
37. |
Ten Haaf K, Jeon J, Tammemägi MC, et al. Risk prediction models for selection of lung cancer screening candidates: a retrospective validation study. PLoS Med, 2017, 14(4): e1002277.
|
38. |
Wang J, Liu Q, Yuan S, et al. Genetic predisposition to lung cancer: comprehensive literature integration, meta-analysis, and multiple evidence assessment of candidate-gene association studies. Sci Rep, 2017, 7(1): 8371.
|
39. |
McKay JD, Hung RJ, Han Y, et al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat Genet, 2017, 49(7): 1126-1132.
|
40. |
Mieth B, Kloft M, Rodríguez JA, et al. Combining multiple hypothesis testing with machine learning increases the statistical power of genome-wide association studies. Sci Rep, 2016, 6: 36671.
|
41. |
Schrider DR, Kern AD. Supervised machine learning for population genetics: a new paradigm. Trends Genet, 2018, 34(4): 301-312.
|
42. |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446.
|
43. |
Chen B, Zhang R, Gan Y, et al. Development and clinical application of radiomics in lung cancer. Radiat Oncol, 2017, 12(1): 154.
|
44. |
Shen W, Zhou M, Yang F, et al. Multi-scale convolutional neural networks for lung nodule classification. Inf Process Med Imaging, 2015, 24: 588-599.
|
45. |
Rios Velazquez E, Parmar C, Liu Y, et al. Somatic mutations drive distinct imaging phenotypes in lung cancer. Cancer Res, 2017, 77(14): 3922-3930.
|
46. |
Lee J, Li B, Cui Y, et al. A quantitative CT imaging signature predicts survival and complements established prognosticators in stage I non-small cell lung cancer. Int J Radiat Oncol Biol Phys, 2018, 102(4): 1098-1106.
|
47. |
Lin Y, Leng Q, Jiang Z, et al. A classifier integrating plasma biomarkers and radiological characteristics for distinguishing malignant from benign pulmonary nodules. Int J Cancer, 2017, 141(6): 1240-1248.
|
48. |
Ma J, Guarnera MA, Zhou W, et al. A prediction model based on biomarkers and clinical characteristics for detection of lung cancer in pulmonary nodules. Transl Oncol, 2017, 10(1): 40-45.
|
49. |
Jiang R, Dong X, Zhu W, et al. Combining PET/CT with serum tumor markers to improve the evaluation of histological type of suspicious lung cancers. PLoS One, 2017, 12(9): e0184338.
|
50. |
Jiang F, Todd NW, Qiu Q, et al. Combined genetic analysis of sputum and computed tomography for noninvasive diagnosis of non-small-cell lung cancer. Lung Cancer, 2009, 66(1): 58-63.
|