1. |
World Health Organization. Global tuberculosis report 2018: WHO/CDS/TB/2018.20. Geneva: World Health Organization, 2018. https://www.who.int/tb/publications/global_report/en/.
|
2. |
David HL. Bacteriology of the mycobacterioses. Atlanta: US Dept of Health, Education, and Welfare, Public Health Service, Center for Disease Control, Bureau of Laboratories, Bacteriology Division, Mycobacteriology Branch, 1976.
|
3. |
Steingart KR, Henry M, Ng V, et al. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis, 2006, 6(9): 570-581.
|
4. |
Steingart KR, Ramsay A, Pai M. Optimizing sputum smear microscopy for the diagnosis of pulmonary tuberculosis. Expert Rev Anti Infect Ther, 2007, 5(3): 327-331.
|
5. |
Parsons LM, Somoskövi A, Gutierrez C, et al. Laboratory diagnosis of tuberculosis in resource-poor countries: challenges and opportunities. Clin Microbiol Rev, 2011, 24(2): 314-350.
|
6. |
Drobniewski F, Nikolayevskyy V, Balabanova Y, et al. Diagnosis of tuberculosis and drug resistance: what can new tools bring us?. Int J Tuberc Lung Dis, 2012, 16(7): 860-870.
|
7. |
World Health Organization. Molecular line probe assays for rapid screening of patients at risk of multi-drug resistant tuberculosis (MDR-TB). Expert group report. Geneva: World Health Organization, 2008.
|
8. |
Hillemann D, Weizenegger M, Kubica T, et al. Use of the genotype MTBDR assay for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis complex isolates. J Clin Microbiol, 2005, 43(8): 3699-3703.
|
9. |
Migliori GB, Matteelli A, Cirillo D, et al. Diagnosis of multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis: Current standards and challenges. Can J Infect Dis Med Microbiol, 2008, 19(2): 169-172.
|
10. |
Tagliani E, Cabibbe AM, Miotto P, et al. Diagnostic performance of the new version (v2. 0) of GenoType MTBDRsl assay for detection of resistance to fluoroquinolones and second-line injectable drugs: a multicenter study. J Clin Microbiol, 2015, 53(9): 2961-2969.
|
11. |
Brossier F, Guindo D, Pham A, et al. Performance of the new version (v2.0) of the GenoType MTBDRsl test for detection of resistance to second-line drugs in multidrug-resistant Mycobacterium tuberculosis complex strains. J Clin Microbiol, 2016, 54(6): 1573-1580.
|
12. |
Gardee Y, Dreyer AW, Koornhof HJ, et al. Evaluation of the GenoType MTBDRsl version 2. 0 assay for second-line drug resistance detection of Mycobacterium tuberculosis isolates in South Africa. J Clin Microbiol, 2017, 55(3): 791-800.
|
13. |
Cepheid. Xpert MTB/RIF package insert. 2009. http://tbevidence.org/documents/rescentre/sop/XpertMTB_Broch_R9_EU.pdf.
|
14. |
Boehme CC, Nabeta P, Hillemann D, et al. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med, 2010, 363(11): 1005-1015.
|
15. |
Boehme CC, Nicol MP, Nabeta P, et al. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet, 2011, 377(9776): 1495-1505.
|
16. |
Helb D, Jones M, Story E, et al. Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol, 2010, 48(1): 229-237.
|
17. |
Denkinger C. The TB diagnostic pipeline: a realistic view. Union Meeting, Liverpool, 2016. (2016-10-26)[2019-06-01]. http://www.finddx.org/wp-content/uploads/2016/10/9th-Symposium-2016-01_Denkinger.pdf.
|
18. |
Steingart KR, Schiller I, Horne DJ, et al. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev, 2014(1): CD009593.
|
19. |
World Health Organization. Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF System. Policy statement: WHO/HTM/TB/2011.4. Geneva: World Health Organization, 2013.
|
20. |
Foundation for Innovative New Diagnostic. Report for WHO: a multicentre noninferiority diagnostic accuracy study of the ultra assay compared to the Xpert MTB/RIF assay. Geneva: Foundation for Innovative New Diagnostic, 2017. https://www.finddx.org/wp-content/uploads/2017/03/Ultra-WHO-report_24MAR2017_FINAL.pdf.
|
21. |
World Health Organization. WHO meeting report of a technical expert consultation: non-inferiority analysis of Xpert MTB /RIF Ultra compared to Xpert MTB/RIF: WHO/HTM/TB/2017.04. Geneva: World Health Organization, 2017.
|
22. |
Chakravorty S, Simmons AM, Rowneki M, et al. The new Xpert MTB/RIF Ultra: improving detection of Mycobacterium tuberculosis and resistance to rifampin in an assay suitable for point-of-care testing. MBio, 2017, 8(4): e00812-17.
|
23. |
Dorman SE, Schumacher SG, Alland D, et al. Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infect Dis, 2018, 18(1): 76-84.
|
24. |
Nicol MP, Workman L, Prins M, et al. Accuracy of Xpert MTB/RIF Ultra for the diagnosis of pulmonary tuberculosis in children. Pediatr Infect Dis J, 2018, 37(10): e261-e263.
|
25. |
Nagai K, Horita N, Yamamoto M, et al. Diagnostic test accuracy of loop-mediated isothermal amplification assay for Mycobacterium tuberculosis: systematic review and meta-analysis. Sci Rep, 2016, 6: 39090.
|
26. |
World Health Organization. The use of a commercial LOOP-mediated isothermal amplification assay (TB-Lamp) for the detection of tuberculosis: WHO/HTM/TB/2013.05. Geneva: World Health Organization, 2013.
|
27. |
Sanchez JA, Pierce KE, Rice JE, et al. Linear-After-The-Exponential (LATE)-PCR: an advanced method of asymmetric PCR and its uses in quantitative real-time analysis. Proc Natl Acad Sci USA, 2004, 101(7): 1933-1938.
|
28. |
Hillemann D, Haasis C, Andres S, et al. Validation of the FluoroType MTBDR assay for detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis complex isolates. J Clin Microbiol, 2018, 56(6): e00072-18.
|
29. |
Kostera J, Leckie G, Abravaya K, et al. Performance of the Abbott RealTime MTB RIF/INH resistance assay when used to test Mycobacterium tuberculosis specimens from Bangladesh. Infect Drug Resist, 2018, 11: 695-699.
|
30. |
Ruiz P, Causse M, Vaquero M, et al. Evaluation of a new automated Abbott RealTime MTB RIF/INH assay for qualitative detection of rifampicin/isoniazid resistance in pulmonary and extra-pulmonary clinical samples of Mycobacterium tuberculosis. Infect Drug Resist, 2017, 10: 463-467.
|
31. |
Scott L, David A, Noble L, et al. Performance of the Abbott RealTime MTB and MTB RIF/INH assays in a setting of high tuberculosis and HIV coinfection in South Africa. J Clin Microbiol, 2017, 55(8): 2491-2501.
|
32. |
Horita N, Yamamoto M, Sato T, et al. Sensitivity and specificity of Cobas TaqMan MTB real-time polymerase chain reaction for culture-proven Mycobacterium tuberculosis: meta-analysis of 26999 specimens from 17 Studies. Sci Rep, 2015, 5: 18113.
|
33. |
Coll F, McNerney R, Preston MD, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med, 2015, 7(1): 51.
|
34. |
Miotto P, Tessema B, Tagliani E, et al. A standardised method for interpreting the association between mutations and phenotypic drug resistance in Mycobacterium tuberculosis. Eur Respir J, 2017, 50(6): 1701354.
|
35. |
McNerney R, Zignol M, Clark TG. Use of whole genome sequencing in surveillance of drug resistant tuberculosis. Expert Rev Anti Infect Ther, 2018, 16(5): 433-442.
|
36. |
Satta G, Atzeni A, Mchugh TD. Mycobacterium tuberculosis and whole genome sequencing: a practical guide and online tools available for the clinical microbiologist. Clin Microbiol Infect, 2017, 23(2): 69-72.
|
37. |
Walker TM, Merker M, Kohl TA, et al. Whole genome sequencing for M/XDR tuberculosis surveillance and for resistance testing. Clin Microbiol Infect, 2017, 23(3): 161-166.
|