1. |
Johnson T, T Monk, Rasmussen LS, et al. Postoperative cognitive dysfunction in middle-aged patients. Anesthesiology, 2002, 96(6): 1351-1357.
|
2. |
Monk TG, Weldon BC, Garvan CW, et al. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology, 2008, 108(1): 18-30.
|
3. |
Meybohm P, Renner J, Broch O, et al. Postoperative neurocognitive dysfunction in patients undergoing cardiac surgery after remote ischemic preconditioning: a double-blind randomized controlled pilot study. PloS one, 2013, 8(5): e64743.
|
4. |
都义日. 术后认知功能障碍的研究进展. 重庆医学, 2019, 48(6): 1021-1024.
|
5. |
Le Y, S Liu, Peng M, et al. Aging differentially affects the loss of neuronal dendritic spine, neuroinflammation and memory impairment at rats after surgery. PloS one, 2014, 9(9): e106837.
|
6. |
Scheperjans F, Aho V, Pereira PA, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord, 2015, 30(3): 350-358.
|
7. |
Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe, 2015, 17(5): 565-576.
|
8. |
Gareau MG, Wine E, Rodrigues DM, et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut, 2011, 60(3): 307-317.
|
9. |
Luczynski P, Whelan SO, O’Sullivan C, et al. Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. EurJ Neurosci, 2016, 44(9): 2654-2666.
|
10. |
Jiang XL, Gu XY, Zhou XX, et al. Intestinal dysbacteriosis mediates the reference memory deficit induced by anaesthesia/surgery in aged mice. Brain Behav Immun, 2019, 80: 605-615.
|
11. |
Cheng D, Li H, Zhou J, et al. Chlorogenic acid relieves lead-induced cognitive impairments and hepato-renal damage via regulating the dysbiosis of the gut microbiota in mice. Food Funct, 2019, 10(2): 681-690.
|
12. |
Heyck M, Ibarra A. Microbiota and memory: a symbiotic therapy to counter cognitive decline?. Brain Circ, 2019, 5(3): 124-129.
|
13. |
Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med, 2014, 6(263): 263ra158.
|
14. |
Marungruang N, Arévalo Sureda E, Lefrançoise A, et al. Impact of dietary induced precocious gut maturation on cecal microbiota and its relation to the blood-brain barrier during the postnatal period in rats. Neurogastroenterol Motil, 2018, 30(6): e13285.
|
15. |
Mayer EA. Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci, 2011, 12(8): 453-466.
|
16. |
Wang Y, Chen S, Xu Z, et al. GLP-1 receptor agonists downregulate aberrant GnT-Ⅲ expression in Alzheimer’s disease models through the Akt/GSK-3β/β-catenin signaling. Neuropharmacology, 2018, 131: 190-199.
|
17. |
Meng F, Li N, Li D, et al. The presence of elevated circulating trimethylamine N-oxide exaggerates postoperative cognitive dysfunction in aged rats. Behav Brain Res, 2019, 368: 111902.
|
18. |
Sharon G, Garg N, Debelius J, et al. Specialized metabolites from the microbiome in health and disease. Cell Metab, 2014, 20(5): 719-730.
|
19. |
Bonaz B, Picq C, Sinniger V, et al. Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflammatory pathway. Neurogastroenterol Motil, 2013, 25(3): 208-221.
|
20. |
Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun, 2014, 38: 1-12.
|
21. |
Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science, 2012, 336(6086): 1268-1273.
|
22. |
Bengmark S. Gut microbiota, immune development and function. Pharmacol Res, 2013, 69(1): 87-113.
|
23. |
Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell, 2009, 139(3): 485-498.
|
24. |
Erny D, Hrabě de Angelis AL, Prinz M. Communicating systems in the body: how microbiota and microglia cooperate. Immunology, 2017, 150(1): 7-15.
|
25. |
吴巧凤, 尹海燕, 徐广银, 等. 肠道菌群与脑科学. 世界华人消化杂志, 2017, 25(20): 1832-1839.
|
26. |
Akbari E, Asemi Z, Daneshvar Kakhaki R, et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s Disease: a randomized, double-blind and controlled trial. Front Aging Neurosci, 2016, 8: 256.
|
27. |
Romo-Araiza A, Ibarra A. Prebiotics and probiotics as potential therapy for cognitive impairment. Med Hypotheses, 2019, 134: 109410.
|
28. |
Zmora N, Zilberman-Schapira G, Suez J, et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell, 2018, 174(6): 1388-1405.
|
29. |
Belizário JE, Napolitano M. Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Front Microbiol, 2015, 6: 1050.
|
30. |
Doron S, Snydman DR. Risk and safety of probiotics. Clin Infect Dis, 2015, 60(Suppl 2): S129-S134.
|
31. |
Dani C, Coviello CC, Corsini II, et al. Lactobacillus sepsis and probiotic therapy in newborns: two new cases and literature review. AJP Rep, 2016, 6(1): e25-e29.
|
32. |
Suez J, Zmora N, Zilberman-Schapira G, et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell, 2018, 174(6): 1406-1423.e16.
|
33. |
Sun J, Xu J, Ling Y, et al. Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry, 2019, 9(1): 189.
|
34. |
Zhan G, Hua D, Huang N, et al. Anesthesia and surgery induce cognitive dysfunction in elderly male mice: the role of gut microbiota. Aging (Albany NY), 2019, 11(6): 1778-1790.
|
35. |
Barrientos RM, Thompson VM, Arnold TH, et al. The role of hepatic and splenic macrophages in E.coli-induced memory impairments in aged rats. Brain Behav Immun, 2015, 43: 60-67.
|
36. |
Liang P, Shan W, Zuo Z. Perioperative use of cefazolin ameliorates postoperative cognitive dysfunction but induces gut inflammation in mice. J Neuroinflammation, 2018, 15(1): 235.
|
37. |
Hovens IB, van Leeuwen BL, Nyakas C, et al. Prior infection exacerbates postoperative cognitive dysfunction in aged rats. AmJ Physiol Regul Integr Comp Physiol, 2015, 309(2): R148-R159.
|
38. |
Kammer J, Ziesing S, Davila LA, et al. Neurological manifestations of mycoplasma pneumoniae infection in hospitalized children and their long-term follow-up. Neuropediatrics, 2016, 47(5): 308-317.
|
39. |
Severyn CJ, Bhatt AS. With probiotics, resistance is not always futile. Cell Host Microbe, 2018, 24(3): 334-336.
|