1. |
贺宇彤, 李道娟, 梁迪, 等. 2013年中国食管癌发病和死亡估计. 中华肿瘤杂志, 2017, 39(4): 315-320.
|
2. |
Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer, 2019, 144(8): 1941-1953.
|
3. |
Hou H, Meng Z, Zhao X, et al. Survival of esophageal cancer in China: a pooled analysis on hospital-based studies from 2000 to 2018. Front Oncol, 2019, 9: 548.
|
4. |
Zhao Q, Yu J, Meng X. A good start of immunotherapy in esophageal cancer. Cancer Med, 2019, 8(10): 4519-4526.
|
5. |
Leitner J, Grabmeier-Pfistershammer K, Steinberger P. Receptors and ligands implicated in human T cell costimulatory processes. Immunol Lett, 2010, 128(2): 89-97.
|
6. |
Sharma P, Allison JP. The future of immune checkpoint therapy. Science, 2015, 348(6230): 56-61.
|
7. |
Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol, 2008, 26: 677-704.
|
8. |
Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther, 2015, 14(4): 847-856.
|
9. |
Jiang Y, Chen M, Nie H, et al. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum Vaccin Immunother, 2019, 15(5): 1111-1122.
|
10. |
Efremova M, Rieder D, Klepsch V, et al. Targeting immune checkpoints potentiates immunoediting and changes the dynamics of tumor evolution. Nat Commun, 2018, 9(1): 32.
|
11. |
Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell, 2018, 175(2): 313-326.
|
12. |
Doi T, Piha-Paul SA, Jalal SI, et al. Safety and antitumor activity of the anti-programmed death-1 antibody pembrolizumab in patients with advanced esophageal carcinoma. J Clin Oncol, 2018, 36(1): 61-67.
|
13. |
Shah MA, Kojima T, Hochhauser D, et al. Efficacy and safety of pembrolizumab for heavily pretreated patients with advanced, metastatic adenocarcinoma or squamous cell carcinoma of the esophagus: the phase 2 KEYNOTE-180 study. JAMA Oncol, 2019, 5(4): 546-550.
|
14. |
Kojima T, Muro K, Francois E, et al. Pembrolizumab versus chemotherapy as second-line therapy for advanced esophageal cancer: Phase Ⅲ KEYNOTE-181 study. J Clin Oncol, 2019, 37: 2.
|
15. |
Kudo T, Hamamoto Y, Kato K, et al. Nivolumab treatment for oesophageal squamous-cell carcinoma: an open-label, multicentre, phase 2 trial. Lancet Oncol, 2017, 18(5): 631-639.
|
16. |
Huang J, Xu B, Mo H, et al. Safety, activity, and biomarkers of SHR-1210, an anti-PD-1 antibody, for patients with advanced esophageal carcinoma. Clin Cancer Res, 2018, 24(6): 1296-1304.
|
17. |
Zitvogel L, Galluzzi L, Smyth MJ, et al. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity, 2013, 39(1): 74-88.
|
18. |
Ramakrishnan R, Huang C, Cho HI, et al. Autophagy induced by conventional chemotherapy mediates tumor cell sensitivity to immunotherapy. Cancer Res, 2012, 72(21): 5483-5493.
|
19. |
Pol J, Vacchelli E, Aranda F, et al. Trial watch: immunogenic cell death inducers for anticancer chemotherapy. Oncoimmunology, 2015, 4(4): e1008866.
|
20. |
Pasquier E, Kavallaris M, André N. Metronomic chemotherapy: new rationale for new directions. Nat Rev Clin Oncol, 2010, 7(8): 455-465.
|
21. |
Bang YJ, Kang YK, Catenacci DV, et al. Pembrolizumab alone or in combination with chemotherapy as first-line therapy for patients with advanced gastric or gastroesophageal junction adenocarcinoma: results from the phase Ⅱ nonrandomized KEYNOTE-059 study. Gastric Cancer, 2019, 22(4): 828-837.
|
22. |
Xu N, Shen L, Jiang H, et al. Efficacy and safety of sintilimab in combination with XELOX in first-line gastric or gastroesophageal junction carcinoma (GC/GEJC). J Clin Oncol, 2019, 37(15 suppl): 4042-4042.
|
23. |
Kato K, Shah MA, Enzinger P, et al. KEYNOTE-590: phase Ⅲ studyof first-line chemotherapy with or without pembrolizumab for advanced esophageal cancer. Future Oncol, 2019, 15(10): 1057-1066.
|
24. |
Terme M, Pernot S, Marcheteau E, et al. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res, 2013, 73(2): 539-549.
|
25. |
Zhang B, Qi L, Wang X, et al. Phase 2 study of camrelizumab (anti-PD-1 antibody) combined with apatinib and chemotherapy for the first-line treatment of advanced esophageal squamous cell carcinoma. J Clin Oncol, 2019, 37(15 suppl): 4033.
|
26. |
Shen L, Peng Z, Zhang Y, et al. Camrelizumab combined with capecitabine and oxaliplatin followed by camrelizumab and apatinib as first-line therapy for advanced or metastatic gastric or gastroesophageal junction cancer: updated results from a multicenter, open label phase Ⅱ trial. J Clin Oncol, 2019, 37 (15 suppl): 4031.
|
27. |
Herbst RS, Arkenau HT, Santana-Davila R, et al. Ramucirumab plus pembrolizumab in patients with previously treated advanced non-small-cell lung cancer, gastro-oesophageal cancer, or urothelial carcinomas (JVDF): a multicohort, non-randomised, open-label, phase 1a/b trial. Lancet Oncol, 2019, 20(8): 1109-1123.
|
28. |
Janjigian YY, Maron SB, Chatila WK, et al. First-line pembrolizumab and trastuzumab in HER2-positive oesophageal, gastric, or gastro-oesophageal junction cancer: an open-label, single-arm, phase 2 trial. Lancet Oncol, 2020, 21(6): 821-831.
|
29. |
Gameiro SR, Jammeh ML, Wattenberg MM, et al. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget, 2014, 5(2): 403-416.
|
30. |
de la Cruz-Merino L, Illescas-Vacas A, Grueso-López A, et al. Radiation for awakening the dormant immune system, a promising challenge to be explored. Front Immunol, 2014, 5: 102.
|
31. |
Walle T, Martinez Monge R, Cerwenka A, et al. Radiation effects on antitumor immune responses: current perspectives and challenges. Ther Adv Med Oncol, 2018, 10: 1758834017742575.
|
32. |
Shapiro J, van Lanschot JJB, Hulshof MCCM, et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results ofa randomised controlled trial. Lancet Oncol, 2015, 16(9): 1090-1098.
|
33. |
de Clercq NC, van den Ende T, van Berge Henegouwen MI, et al. A phase Ⅱ feasibility trial of neoadjuvant chemoradiotherapy combined with atezolizumab for resectable esophageal adenocarcinoma: the PERFECT trial. J Clin Oncol, 2019, 37 (15 suppl): 4045.
|
34. |
Hong MH, Kim H, Park SY, et al. A phase Ⅱ trial of preoperative chemoradiotherapy and pembrolizumab for locally advanced esophageal squamous cell carcinoma (ESCC). J Clin Oncol, 2019, 37(15 suppl): 4027.
|
35. |
Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet, 2016, 387(10027): 1540-1550.
|
36. |
Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet, 2017, 389(10066): 255-265.
|
37. |
Ma J, Li J, Qian M, et al. PD-L1 expression and the prognostic significance in gastric cancer: a retrospective comparison of three PD-L1 antibody clones (SP142, 28-8 and E1L3N). Diagn Pathol, 2018, 13(1): 91.
|
38. |
Dong J, Zhu D, Tang X, et al. Circulating tumor cells in pulmonary vein and peripheral arterial provide a metric for PD-L1 diagnosis and prognosis of patients with non-small cell lung cancer. PLoS One, 2019, 14(7): e0220306.
|
39. |
Yue C, Jiang Y, Li P, et al. Dynamic change of PD-L1 expression on circulating tumor cells in advanced solid tumor patients undergoing PD-1 blockade therapy. Oncoimmunology, 2018, 7(7): e1438111.
|
40. |
Strati A, Koutsodontis G, Papaxoinis G, et al. Prognostic significance of PD-L1 expression on circulating tumor cells in patients with head and neck squamous cell carcinoma. Ann Oncol, 2017, 28(8): 1923-1933.
|
41. |
Guo W, Wang P, Li N, et al. Prognostic value of PD-L1 in esophageal squamous cell carcinoma: a meta-analysis. Oncotarget, 2017, 9(17): 13920-13933.
|
42. |
Ajani JA, D’Amico TA, Bentrem DJ, et al. Esophageal and Esophagogastric junction cancers, version 2. 2019, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw, 2019, 17(7): 855-883.
|
43. |
Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N EnglJ Med, 2015, 373(2): 123-135.
|
44. |
O’Donnell JS, Long GV, Scolyer RA, et al. Resistance to PD-1/PD-L1 checkpoint inhibition. Cancer Treat Rev, 2017, 52: 71-81.
|
45. |
Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science, 2017, 357(6349): 409-413.
|
46. |
Kong P, Wang J, Song Z, et al. Circulating lymphocytes, PD-L1 expression on tumor-infiltrating lymphocytes, and survival of colorectal cancer patients with different mismatch repair gene status. J Cancer, 2019, 10(7): 1745-1754.
|
47. |
Dudley JC, Lin MT, Le DT, et al. Microsatellite instability asa biomarker for PD-1 blockade. Clin Cancer Res, 2016, 22(4): 813-820.
|
48. |
Mills AM, Dill EA, Moskaluk CA, et al. The relationship between mismatch repair deficiency and PD-L1 expression in breast carcinoma. Am J Surg Pathol, 2018, 42(2): 183-191.
|
49. |
Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med, 2017, 377(25): 2500-2501.
|