1. |
Lang BT, Cregg JM, DePaul MA, et al. Modulation of the proteoglycan receptor PTP σpromotes recovery after spinal cord injury. Nature, 2015, 518(7539): 404-408.
|
2. |
Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury. Nat Rev Dis Primers, 2017, 3: 17018.
|
3. |
Anderson MA, Burda JE, Ren Yl, et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature, 2016, 532(7598): 195-200.
|
4. |
Ahuja CS, Nori S, Tetreault L, et al. Traumatic spinal cord injury-repair and regeneration. Neurosurgery, 2017, 80(3): S9-S22.
|
5. |
Zhao Z, Nelson AR, Betsholtz C, et al. Establishment and dysfunction of the blood-brain barrier. Cell, 2015, 163(5): 1064-1078.
|
6. |
Rockey DC, Bell PD, Hill JA. Fibrosis--a common pathway to organ injury and failure. N Engl J Med, 2015, 372(12): 1138-1149.
|
7. |
Heindryckx F, Li JP. Role of proteoglycans in neuro-inflammation and central nervous system fibrosis. Matrix Biol, 2018, 68-69: 589-601.
|
8. |
Zhu Y, Soderblom C, Krishnan V, et al. Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury. Neurobiol Dis, 2015, 74: 114-125.
|
9. |
O’Shea TM, Burda JE, Sofroniew MV. Cell biology of spinal cord injury and repair. J Clin Invest, 2017, 127(9): 3259-3270.
|
10. |
Soderblom C, Luo X, Blumenthal E, et al. Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J Neurosci, 2013, 33(34): 13882-13887.
|
11. |
Zhu Y, Soderblom C, Trojanowsky M, et al. Fibronectin matrix assembly after spinal cord injury. J Neurotrauma, 2015, 32(15): 1158-1167.
|
12. |
Dore-Duffy P, Owen C, Balabanov R, et al. Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res, 2000, 60(1): 55-69.
|
13. |
Kawano H, Kimura-Kuroda J, Komuta Y, et al. Role of the lesion scar in the response to damage and repair of the central nervous system. Cell Tissue Res, 2012, 349(1): 169-180.
|
14. |
Dias DO, Göritz C. Fibrotic scarring following lesions to the central nervous system. Matrix Biol, 2018, 68-69: 561-570.
|
15. |
Vienberg S, Geiger J, Madsen S, et al. MicroRNAs in metabolism. Acta Physiol (Oxf), 2017, 219(2): 346-361.
|
16. |
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2): 215-233.
|
17. |
Yuan J, Chen H, Ge D, et al. Mir-21 promotes cardiac fibrosis after myocardial infarction via targeting Smad7. Cell Physiol Biochem, 2017, 42(6): 2207-2219.
|
18. |
Ruschel J, Hellal F, Flynn KC, et al. Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury. Science, 2015, 348(6232): 347-352.
|
19. |
Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci, 2006, 7(8): 617-627.
|
20. |
Katarina O, Lucia M, Dana J, et al. Fibrotic scar model and TGF ‐β1 differently modulate action potential firing and voltage‐dependent ion currents in hippocampal neurons in primary culture. Eur J Neurosci, 2017, 46(6): 2161-2176.
|
21. |
Shukla GC, Singh J, Barik S. MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol, 2011, 3(3): 83-92.
|
22. |
Ning B, Gao L, Liu RH, et al. microRNAs in spinal cord injury: potential roles and therapeutic implications. Int J Biol Sci, 2014, 10(9): 997-1006.
|
23. |
Nieto-Diaz M, Esteban FJ, Reigada D, et al. MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics. Front Cell Neurosci, 2014, 8: 53.
|
24. |
Liu R, Wang W, Wang S, et al. microRNA-21 regulates astrocytic reaction post-acute phase of spinal cord injury through modulating TGF-β signaling. Aging (Albany NY), 2018, 10(6): 1474-1488.
|
25. |
Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 2008, 456(7224): 980-984.
|
26. |
Zhang J, Jiao J, Cermelli S, et al. miR-21 inhibition reduces liver fibrosis and prevents tumor development by inducing apoptosis of CD24+progenitor cells. Cancer Res, 2015, 75(9): 1859-1867.
|
27. |
Lorenzen JM, Schauerte C, Hübner A, et al. Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis. Eur Heart J, 2015, 36(32): 2184-2196.
|
28. |
Pandit KV, Milosevic J, Kaminski N. MicroRNAs in idiopathic pulmonary fibrosis. Translational Research, 2011, 157(4): 191-199.
|
29. |
Chung ACK, Lan HY. MicroRNAs in renal fibrosis. Front Physiol, 2015, 6: 50.
|
30. |
Gaur AB, Holbeck SL, Colburn NH, et al. Downregulation of Pdcd4 by mir-21 facilitates glioblastoma proliferation in vivo. Neuro Oncol, 2011, 13(6): 580-590.
|