1. |
胡仁明, 谢颖, 鹿斌, 等. 2型糖尿病患者高发“代谢性炎症综合征”. 中华内分泌代谢杂志, 2016, 32(1): 27-32.
|
2. |
Fitzgibbons TP, Czech MP. Emerging evidence for beneficial macrophage functions in atherosclerosis and obesity-induced insulin resistance. J Mol Med (Berl), 2016, 94(3): 267-275.
|
3. |
Luiken JJ, Chanda D, Nabben M, et al. Post-translational modifications of CD36: implications for regulation of myocellular fatty acid uptake. Biochim Biophys Acta, 2016, 1862(SR/B2): 2253-2258.
|
4. |
Lubura M, Hesse D, Kraemer M, et al. Diabetes prevalence in NZO females depends on estrogen action on liver fat content. Am J Physiol Endocrinol Metab, 2015, 309(12): E968-E980.
|
5. |
Kim HJ, Moon JS, Park IR, et al. A novel index using soluble CD36 is associated with the prevalence of type 2 diabetes mellitus: comparison study with triglyceride-glucose index. Endocrinol Metab (Seoul), 2017, 32(3): 375-382.
|
6. |
Grewal T, Enrich C, Rentero C, et al. Annexins in adipose tissue: novel players in obesity. Int J Mol Sci, 2019, 20(14): 3449.
|
7. |
Tian K, Xu Y, Sahebkar A, et al. CD36 in atherosclerosis: pathophysiological mechanisms and therapeutic implications. Curr Atheroscler Rep, 2020, 22(10): 59.
|
8. |
Jiang Y, Wang M, Huang K, et al. Oxidized low-density lipoprotein induces secretion of interleukin-1β by macrophages via reactive oxygen species-dependent NLRP3 inflammasome activation. Biochem Biophys Res Commun, 2012, 425(2): 121-126.
|
9. |
Raghavan S, Singh NK, Gali S, et al. Protein kinase Cθ via activating transcription factor 2-Mediated CD36 expression and foam cell formation of Ly6C(hi) cells contributes to atherosclerosis. Circulation, 2018, 138(21): 2395-2412.
|
10. |
Liu J, Yang P, Zuo G, et al. Long-chain fatty acid activates hepatocytes through CD36 mediated oxidative stress. Lipids Health Dis, 2018, 17(1): 153.
|
11. |
Koonen DP, Jensen MK, Handberg A. Soluble CD36: a marker of the (pathophysiological) role of CD36 in the metabolic syndrome?. Arch Physiol Biochem, 2011, 117(2): 57-63.
|
12. |
Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update. Arch Toxicol, 2015, 89(6): 867-882.
|
13. |
Zhang Q, Sun X, Xiao X, et al. 649 Effects of maternal chromium restriction on the long-term programming in MAPK signaling pathway of lipid metabolism in mice. Nutrients, 2016, 8: E488.
|
14. |
Zhang C, Luo X, Chen J, et al. Osteoprotegerin promotes liver steatosis by targeting the ERK-PPAR-γ-CD36 pathway. Diabetes, 2019, 68(10): 1902-1914.
|
15. |
Wei S, Zhang L, Wang BL, et al. ALDH2 deficiency inhibits Ox-LDL induced foam cell formation via suppressing CD36 expression. Biochem Biophys Res Commun, 2019, 512(1): 41-48.
|
16. |
Adorni MP, Cipollari E, Favari E, et al. Inhibitory effect of PCSK9 on Abca1 protein expression and cholesterol efflux in macrophages. Atherosclerosis, 2017, 256: 1-6.
|
17. |
He J, Zhang G, Pang Q, et al. SIRT6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox-LDL condition. FEBS J, 2017, 284(9): 1324-1337.
|
18. |
Chen Y, Yang LX, Guo RW, et al. The role of FAK in the secretion of MMP9 after CD147 stimulation in macrophages. Int Heart J, 2018, 59(2): 394-398.
|
19. |
Biedroń R, Peruń A, Józefowski S. CD36 differently regulates macrophage responses to smooth and rough lipopolysaccharide. PLoS One, 2016, 11(4): e0153558.
|
20. |
He C, Zhang G, Ouyang H, et al. Effects of β2/aβ2 on oxLDL-induced CD36 activation in THP-1 macrophages. Life Sci, 2019, 239: 117000.
|
21. |
Sasi USS, Ganapathy S, Palayyan SR, et al. Mitochondria associated membranes (MAMs): emerging drug targets for diabetes. Curr Med Chem, 2020, 27(20): 3362-3385.
|
22. |
Rieusset J. Role of endoplasmic reticulum-mitochondria communication in type 2 diabetes. Adv Exp Med Biol, 2017, 997: 171-186.
|
23. |
Geng J, Xu H, Fu W, et al. Rosuvastatin protects against endothelial cell apoptosis in vitro and alleviates atherosclerosis in ApoE-/- mice by suppressing endoplasmic reticulum stress. Exp Ther Med, 2020, 20(1): 550-560.
|
24. |
Nègre-Salvayre A, Augé N, Camaré C, et al. Dual signaling evoked by oxidized LDLs in vascular cells. Free Radic Biol Med, 2017, 106: 118-133.
|
25. |
Widenmaier SB, Snyder N, Nguyen TB, et al. NRF1 is an ER membrane sensor that is central to cholesterol homeostasis. Cell, 2017, 171(5): 1094-1109. e15.
|
26. |
Chen Y, Yang M, Huang W, et al. Mitochondrial metabolic reprogramming by CD36 signaling drives macrophage inflammatory responses. Circ Res, 2019, 125(12): 1087-1102.
|
27. |
Yang S, Yuan HQ, Hao YM, et al. Macrophage polarization in atherosclerosis. Clin Chim Acta, 2020, 501: 142-146.
|
28. |
Ma Z, Ketelhuth D, Wirström T, et al. Increased uptake of oxLDL does not exert lipotoxic effects in insulin-secreting cells. J Mol Endocrinol, 2019, 62(4): 159-168.
|
29. |
Krenkel O, Hundertmark J, Abdallah AT, et al. Myeloid cells in liver and bone marrow acquire a functionally distinct inflammatory phenotype during obesity-related steatohepatitis. Gut, 2020, 69(3): 551-563.
|
30. |
Rao X, Zhao S, Braunstein Z, et al. Oxidized LDL upregulates macrophage DPP4 expression via TLR4/TRIF/CD36 pathways. EBioMedicine, 2019, 41: 50-61.
|
31. |
Oh H, Park SH, Kang MK, et al. Asaronic acid attenuates macrophage activation toward M1 phenotype through inhibition of NF-κB pathway and JAK-STAT signaling in glucose-loaded murine macrophages. J Agric Food Chem, 2019, 67(36): 10069-10078.
|
32. |
Ekici M, Kisa U, Arikan Durmaz S, et al. Fatty acid transport receptor soluble CD36 and dietary fatty acid pattern in type 2 diabetic patients: a comparative study. Br J Nutr, 2018, 119(2): 153-162.
|
33. |
Tsai S, Clemente-Casares X, Zhou AC, et al. Insulin receptor-mediated stimulation boosts T cell immunity during inflammation and infection. Cell Metab, 2018, 28(6): 922-934. e4.
|
34. |
Beverly JK, Budoff MJ. Atherosclerosis: pathophysiology of insulin resistance, hyperglycemia, hyperlipidemia, and inflammation. J Diabetes, 2020, 12(2): 102-104.
|
35. |
Yang N, Li S, Liu S, et al. Insulin resistance-related proteins are overexpressed in patients and rats treated with olanzapine and are reverted by pueraria in the rat model. J Clin Psychopharmacol, 2019, 39(3): 214-219.
|
36. |
张爱军, 郭宏伟, 冯琼, 等. 清道夫受体CD36基因缺陷对正常高值血压患者动态血压节律及代谢指标的影响研究. 中国全科医学, 2020, 23(23): 2890-2894.
|
37. |
Balkaya M, Kim ID, Shakil F, et al. CD36 deficiency reduces chronic BBB dysfunction and scar formation and improves activity, hedonic and memory deficits in ischemic stroke. J Cereb Blood Flow Metab, 2021, 41(3): 486-501.
|
38. |
Badrnya S, Schrottmaier WC, Kral JB, et al. Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation. Arterioscler Thromb Vasc Biol, 2014, 34(3): 571-580.
|